The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied w...The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.展开更多
The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions a...The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions are obtained by using multiplier techniques to establish identity ddtE(t)+F(t)=0 and skillfully selecting f(t),g(t),h(t)when the initial data have a compact support.Using the similar method,the Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│+t)-1 and a nonlinearity │u│p-1u is studied,similar solutions are obtained when the initial data have a compact support.展开更多
Decay of the energy for the Cauchy problem of the wave equation of variable coefficients with a dissipation is considered. It is shown that whether a dissipation can be localized near infinity depends on the curvature...Decay of the energy for the Cauchy problem of the wave equation of variable coefficients with a dissipation is considered. It is shown that whether a dissipation can be localized near infinity depends on the curvature properties of a Riemannian metric given by the variable coefficients. In particular, some criteria on curvature of the Riemannian manifold for a dissipation to be localized are given.展开更多
This paper considers the stabilization of the transmission problem of wave equations with variable coefficients. By introducing both boundary feedback control and distribute feedback control near the transmission boun...This paper considers the stabilization of the transmission problem of wave equations with variable coefficients. By introducing both boundary feedback control and distribute feedback control near the transmission boundary, the author establishes the uniform energy decay rate for the problem.展开更多
The initial boundary value problem for a Kirchhoff equation with Lipschitz type continuous coefficient is studied on bounded domain.Under some conditions,the energy decaying and blow-up of solution are discussed.By re...The initial boundary value problem for a Kirchhoff equation with Lipschitz type continuous coefficient is studied on bounded domain.Under some conditions,the energy decaying and blow-up of solution are discussed.By refining method,the exponent decay estimates of the energy function and the estimates of the life span of blow-up solutions are given.展开更多
文摘The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.
基金The National Natural Science Foundation of China(No.10771032)
文摘The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions are obtained by using multiplier techniques to establish identity ddtE(t)+F(t)=0 and skillfully selecting f(t),g(t),h(t)when the initial data have a compact support.Using the similar method,the Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│+t)-1 and a nonlinearity │u│p-1u is studied,similar solutions are obtained when the initial data have a compact support.
基金supported by the National Natural Science Foundation of China (Nos.60225003,60821091,10831007,60774025)KJCX3-SYW-S01
文摘Decay of the energy for the Cauchy problem of the wave equation of variable coefficients with a dissipation is considered. It is shown that whether a dissipation can be localized near infinity depends on the curvature properties of a Riemannian metric given by the variable coefficients. In particular, some criteria on curvature of the Riemannian manifold for a dissipation to be localized are given.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos. 10571161 and 60774014.
文摘This paper considers the stabilization of the transmission problem of wave equations with variable coefficients. By introducing both boundary feedback control and distribute feedback control near the transmission boundary, the author establishes the uniform energy decay rate for the problem.
基金the Natural Science Foundation of Hunan Province (No.05jj40008)the Youth-items Research Fund of Hengyang Normal University (No.08A27)
文摘The initial boundary value problem for a Kirchhoff equation with Lipschitz type continuous coefficient is studied on bounded domain.Under some conditions,the energy decaying and blow-up of solution are discussed.By refining method,the exponent decay estimates of the energy function and the estimates of the life span of blow-up solutions are given.