To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was ...To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was defined as the energy absorbed by the honeycomb structure per unit volume. This parameter was often used for determining the crashworthiness of thin-walled structures. In order to find the most optimized metal square honeycomb structure with the maximum SEA and the lowest peak stress, the cell length and the foil thickness of the metal honeycombs were optimized, with a low peak stress and a high SEA set as the two primary objectives. The pre-processing software Patran was used to build FE models, and the explicit solver LS-DYNA was employed to perform the crashworthiness analyses. The results show that the square honeycomb exhibits good energy absorption performance in some cases. The geometry is effective using 16.8% less buffer structure volume than the hexagonal honeycombs with a peak stress limitation of 1.21 MPa.展开更多
This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consump...This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consumption, which enables one to estimate the energy consumption during any period of the year. The energy readings and the normalized accumulated energy profile are used to estimate the hourly consumed active power, which can be used for future planning and sizing the equipment of the electrical system. The effectiveness of the proposed method is demonstrated by comparing the simulated results with that of real measured data.展开更多
The mono-frequency peak luminosity and the corresponding photon energy of the time-integrated (L~, Eg) and peak time (L~, ffp) vfv spectra were derived for a sample of 38 redshift-known Fermi GRBs by fitting the s...The mono-frequency peak luminosity and the corresponding photon energy of the time-integrated (L~, Eg) and peak time (L~, ffp) vfv spectra were derived for a sample of 38 redshift-known Fermi GRBs by fitting the spectra with the Band function. It was found that Ept is generally consistent with Ep, and Lp is averagely three times larger than Lp. The slope of the Lp1 -Etp relation was consistent with that of the Lps - Eps relation. The photon indices in the peak time spectrum, particularly, the index of the low energy end was, were statistically larger than that in the time-integrated spectrum. These results indicate that Lp and Ep are dominated by Lp1 and Ept, respectively. The difference of the spectral indices between the time-integrated and peak time spectra may be because of the overlap effect of a series of time-resolved spectra within a GRB. Our simulations, which were based on the observed spectral evolution and correlation between the energy flux and the peak energy within individual GRBs support our speculations. The Lt - Et, relation may be less contaminated by the overla!a effect, and it would may be an intrinsic feature of radiation ohvsics.展开更多
基金Project(07018) supported by the College Discipline Innovation Wisdom Plan in China
文摘To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was defined as the energy absorbed by the honeycomb structure per unit volume. This parameter was often used for determining the crashworthiness of thin-walled structures. In order to find the most optimized metal square honeycomb structure with the maximum SEA and the lowest peak stress, the cell length and the foil thickness of the metal honeycombs were optimized, with a low peak stress and a high SEA set as the two primary objectives. The pre-processing software Patran was used to build FE models, and the explicit solver LS-DYNA was employed to perform the crashworthiness analyses. The results show that the square honeycomb exhibits good energy absorption performance in some cases. The geometry is effective using 16.8% less buffer structure volume than the hexagonal honeycombs with a peak stress limitation of 1.21 MPa.
文摘This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consumption, which enables one to estimate the energy consumption during any period of the year. The energy readings and the normalized accumulated energy profile are used to estimate the hourly consumed active power, which can be used for future planning and sizing the equipment of the electrical system. The effectiveness of the proposed method is demonstrated by comparing the simulated results with that of real measured data.
基金supported by the National Basic Research Program of China(Grant No.2014CB845800)the National Natural Science Foundation of China(Grant No.11025313)+1 种基金Guangxi Science Foundation(Grant No.2013GXNSFFA019001)Key Laboratory for the Structure and Evolution of Celestial Objects of Chinese Academy of Sciences,and the Strategic Priority Research Program"The Emergence of Cosmological Structures"of the Chinese Academy of Sciences(Grant No.XDB09000000)
文摘The mono-frequency peak luminosity and the corresponding photon energy of the time-integrated (L~, Eg) and peak time (L~, ffp) vfv spectra were derived for a sample of 38 redshift-known Fermi GRBs by fitting the spectra with the Band function. It was found that Ept is generally consistent with Ep, and Lp is averagely three times larger than Lp. The slope of the Lp1 -Etp relation was consistent with that of the Lps - Eps relation. The photon indices in the peak time spectrum, particularly, the index of the low energy end was, were statistically larger than that in the time-integrated spectrum. These results indicate that Lp and Ep are dominated by Lp1 and Ept, respectively. The difference of the spectral indices between the time-integrated and peak time spectra may be because of the overlap effect of a series of time-resolved spectra within a GRB. Our simulations, which were based on the observed spectral evolution and correlation between the energy flux and the peak energy within individual GRBs support our speculations. The Lt - Et, relation may be less contaminated by the overla!a effect, and it would may be an intrinsic feature of radiation ohvsics.