An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their level...An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.展开更多
The current development and utilization status of bio-energy at home and abroad was summarized, and a multi-angle in-depth analysis and reflection was given to the problems encountered in the development of bio-energy...The current development and utilization status of bio-energy at home and abroad was summarized, and a multi-angle in-depth analysis and reflection was given to the problems encountered in the development of bio-energy. Furthermore, some suggestions were put forward to accelerate the further development of bio-en-ergy industry in China.展开更多
A heuristic metric is presented to achieve the optimal connected set covering problem (SCP) in sensor networks. The coverage solution with the energy efficiency can guarantee that all targets are fully covered. Amon...A heuristic metric is presented to achieve the optimal connected set covering problem (SCP) in sensor networks. The coverage solution with the energy efficiency can guarantee that all targets are fully covered. Among targets, the crucial ones are redundantly covered to ensure more reliable monitors. And the information collected by the above coverage solution can be transmitted to Sink by the connected data-gathering structure. A novel ant colony optimization (ACO) algorithm--improved-MMAS-ACS-hybrid algorithm (IMAH) is adopted to achieve the above metric. Based on the design of the heuristic factor, artificial ants can adaptively detect the coverage and energy status of sensor networks and find the low-energy-cost paths to keep the communication connectivity to Sink. By introducing the pheromone-judgment-factor and the evaluation function to the pheromone updating rule, the pheromone trail on the global-best solution is enhanced, while avoiding the premature stagnation. Finally, the energy efficiency set can be obtained with high coverage-efficiency to all targets and reliable connectivity to Sink and the lifetime of the connected coverage set is prolonged.展开更多
We propose a six-parameter exponential-type potential (SPEP), which has been shown to be a shape-invariant potential with a translation of parameters. For this reducible potential, the exact energy levels are obtained...We propose a six-parameter exponential-type potential (SPEP), which has been shown to be a shape-invariant potential with a translation of parameters. For this reducible potential, the exact energy levels are obtained byusing the supersymmetric shape invariance technique. Choosing appropriate parameters, four classes of exponential-typepotentials and their exact energy spectra are reduced from the SPEP and a general energy level formula, respectively.Each class shows the identity except for the different definitions of parameters.展开更多
In IaaS Cloud,different mapping relationships between virtual machines(VMs) and physical machines(PMs) cause different resource utilization,so how to place VMs on PMs to reduce energy consumption is becoming one of th...In IaaS Cloud,different mapping relationships between virtual machines(VMs) and physical machines(PMs) cause different resource utilization,so how to place VMs on PMs to reduce energy consumption is becoming one of the major concerns for cloud providers.The existing VM scheduling schemes propose optimize PMs or network resources utilization,but few of them attempt to improve the energy efficiency of these two kinds of resources simultaneously.This paper proposes a VM scheduling scheme meeting multiple resource constraints,such as the physical server size(CPU,memory,storage,bandwidth,etc.) and network link capacity to reduce both the numbers of active PMs and network elements so as to finally reduce energy consumption.Since VM scheduling problem is abstracted as a combination of bin packing problem and quadratic assignment problem,which is also known as a classic combinatorial optimization and NP-hard problem.Accordingly,we design a twostage heuristic algorithm to solve the issue,and the simulations show that our solution outperforms the existing PM- or network-only optimization solutions.展开更多
In order to resolve the relay selection problem in wireless mobile relay networks (WMRNs), a novel balanced energy-efficient mobile relay selection scheme is proposed in this paper. Compared with traditional counter...In order to resolve the relay selection problem in wireless mobile relay networks (WMRNs), a novel balanced energy-efficient mobile relay selection scheme is proposed in this paper. Compared with traditional counter-based algorithm, distance and energy consumption are considered from network respect to provide a better network lifetime performance in the proposed scheme. Also, it performs well when nodes move freely at high speed. A random assessment delay (RAD) mechanism is added to avoid collisions and improve transmission efficiency. Simulation results reveal that, the proposed scheme has advantages in prolonging network lifetime, balancing energy compared with existing counter-based scheme. consumption and reducing the total energy consumption展开更多
A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the...A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.展开更多
In this paper, a prefetching technique is proposed to solve the performance problem caused by remote data access delay. In the technique, the map tasks which will cause the delay are predicted first and then the input...In this paper, a prefetching technique is proposed to solve the performance problem caused by remote data access delay. In the technique, the map tasks which will cause the delay are predicted first and then the input data of these tasks will be preloaded before the tasks are scheduled. During the execution, the input data can be read from local nodes. Therefore, the delay can be hidden. The technique has been implemented in Hadoop-0. 20.1. The experiment results have shown that the technique reduces map tasks causing delay, and improves the performance of Hadoop MapRe- duce by 20%.展开更多
Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it pos...Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it poses become an NP-hard problem.This problem has major practical significance because the effectiveness of the schedules obtained has strong economical impact for any mining project.Despite of the rapid theoretical and technical advances in this field,heuristics is still the only viable approach for large scale industrial applications.This work presents an approach combining genetic algorithms(GAs) and Lagrangian relaxation(LR) to optimally determine the CLTPSP of open pit mines.GAs are stochastic,parallel search algorithms based on the natural selection and the process of evolution.LR method is known for handling large-scale separable problems; however,the convergence to the optimal solution can be slow.The proposed Lagrangian relaxation and genetic algorithms(LR-GAs) combines genetic algorithms into Lagrangian relaxation method to update the Lagrangian multipliers.This approach leads to improve the performance of Lagrangian relaxation method in solving CLTPSP.Numerical results demonstrate that the LR method using GAs to improve its performance speeding up the convergence.Subsequently,highly near-optimal solution to the CLTPSP can be achieved by the LR-GAs.展开更多
In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorith...In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorithm applies the membrane computing theory to quantum bee colony optimization(QBCO),which is an effective discrete optimization algorithm.The global convergence performance of MQBCO is proved by Markov theory,and the validity of MQBCO is verified by testing the classical benchmark functions.Then the proposed MQBCO algorithm is used to solve decision engine problems of cognitive radio system.By hybridizing the QBCO and membrane computing theory,the quantum state and observation state of the quantum bees can be well evolved within the membrane structure.Simulation results for cognitive radio system show that the proposed decision engine method is superior to the traditional intelligent decision engine algorithms in terms of convergence,precision and stability.Simulation experiments under different communication scenarios illustrate that the balance between three objective functions and the adapted parameter configuration is consistent with the weights of three normalized objective functions.展开更多
The paper regards to problems of sales point performance being situated in the centres of big cities in Poland. Problems are investigated with the use of surveys being carried out in 900 sales points according to aut...The paper regards to problems of sales point performance being situated in the centres of big cities in Poland. Problems are investigated with the use of surveys being carried out in 900 sales points according to author's DORED (DORED-dobre rozwiazania dla dostaw in Polish, good solutions for delivery in English) program performance. The DORED program has been mentioned for the first time in Logistics (a Polish newspaper) in February, 2005. The developed topic has been the pilot project of DORED program. That was in Wroclaw City (Poland), where the regions of Przedmiescie swidnickie were the first test of method of the DORED program. The mentioned topic has encompassed the city logistic problems, land transportation and movement organization performance in the city centres.展开更多
基金The Natural Science Foundation of Jiangsu Province(NoBK2005409)
文摘An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.
文摘The current development and utilization status of bio-energy at home and abroad was summarized, and a multi-angle in-depth analysis and reflection was given to the problems encountered in the development of bio-energy. Furthermore, some suggestions were put forward to accelerate the further development of bio-en-ergy industry in China.
文摘A heuristic metric is presented to achieve the optimal connected set covering problem (SCP) in sensor networks. The coverage solution with the energy efficiency can guarantee that all targets are fully covered. Among targets, the crucial ones are redundantly covered to ensure more reliable monitors. And the information collected by the above coverage solution can be transmitted to Sink by the connected data-gathering structure. A novel ant colony optimization (ACO) algorithm--improved-MMAS-ACS-hybrid algorithm (IMAH) is adopted to achieve the above metric. Based on the design of the heuristic factor, artificial ants can adaptively detect the coverage and energy status of sensor networks and find the low-energy-cost paths to keep the communication connectivity to Sink. By introducing the pheromone-judgment-factor and the evaluation function to the pheromone updating rule, the pheromone trail on the global-best solution is enhanced, while avoiding the premature stagnation. Finally, the energy efficiency set can be obtained with high coverage-efficiency to all targets and reliable connectivity to Sink and the lifetime of the connected coverage set is prolonged.
文摘We propose a six-parameter exponential-type potential (SPEP), which has been shown to be a shape-invariant potential with a translation of parameters. For this reducible potential, the exact energy levels are obtained byusing the supersymmetric shape invariance technique. Choosing appropriate parameters, four classes of exponential-typepotentials and their exact energy spectra are reduced from the SPEP and a general energy level formula, respectively.Each class shows the identity except for the different definitions of parameters.
基金the National Natural Science Foundation of China,the National High Technology Research and Development Program of China (863 Program),the Fundamental Research Funds for the Central Universities,the Natural Science Foundation of Gansu Province,China,the Open Fund of the State Key Laboratory of Software Development Environment
文摘In IaaS Cloud,different mapping relationships between virtual machines(VMs) and physical machines(PMs) cause different resource utilization,so how to place VMs on PMs to reduce energy consumption is becoming one of the major concerns for cloud providers.The existing VM scheduling schemes propose optimize PMs or network resources utilization,but few of them attempt to improve the energy efficiency of these two kinds of resources simultaneously.This paper proposes a VM scheduling scheme meeting multiple resource constraints,such as the physical server size(CPU,memory,storage,bandwidth,etc.) and network link capacity to reduce both the numbers of active PMs and network elements so as to finally reduce energy consumption.Since VM scheduling problem is abstracted as a combination of bin packing problem and quadratic assignment problem,which is also known as a classic combinatorial optimization and NP-hard problem.Accordingly,we design a twostage heuristic algorithm to solve the issue,and the simulations show that our solution outperforms the existing PM- or network-only optimization solutions.
基金Supported by the National High Technology Research and Development Programme of China (No. 2007AA01Z221, 2009AA01Z246) and the National Natural Science Foundation of China (No. 60832009).
文摘In order to resolve the relay selection problem in wireless mobile relay networks (WMRNs), a novel balanced energy-efficient mobile relay selection scheme is proposed in this paper. Compared with traditional counter-based algorithm, distance and energy consumption are considered from network respect to provide a better network lifetime performance in the proposed scheme. Also, it performs well when nodes move freely at high speed. A random assessment delay (RAD) mechanism is added to avoid collisions and improve transmission efficiency. Simulation results reveal that, the proposed scheme has advantages in prolonging network lifetime, balancing energy compared with existing counter-based scheme. consumption and reducing the total energy consumption
基金Project(2008BA00400)supported by the Foundation of Department of Science and Technology of Jiangxi Province,China
文摘A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.
文摘In this paper, a prefetching technique is proposed to solve the performance problem caused by remote data access delay. In the technique, the map tasks which will cause the delay are predicted first and then the input data of these tasks will be preloaded before the tasks are scheduled. During the execution, the input data can be read from local nodes. Therefore, the delay can be hidden. The technique has been implemented in Hadoop-0. 20.1. The experiment results have shown that the technique reduces map tasks causing delay, and improves the performance of Hadoop MapRe- duce by 20%.
文摘Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it poses become an NP-hard problem.This problem has major practical significance because the effectiveness of the schedules obtained has strong economical impact for any mining project.Despite of the rapid theoretical and technical advances in this field,heuristics is still the only viable approach for large scale industrial applications.This work presents an approach combining genetic algorithms(GAs) and Lagrangian relaxation(LR) to optimally determine the CLTPSP of open pit mines.GAs are stochastic,parallel search algorithms based on the natural selection and the process of evolution.LR method is known for handling large-scale separable problems; however,the convergence to the optimal solution can be slow.The proposed Lagrangian relaxation and genetic algorithms(LR-GAs) combines genetic algorithms into Lagrangian relaxation method to update the Lagrangian multipliers.This approach leads to improve the performance of Lagrangian relaxation method in solving CLTPSP.Numerical results demonstrate that the LR method using GAs to improve its performance speeding up the convergence.Subsequently,highly near-optimal solution to the CLTPSP can be achieved by the LR-GAs.
基金Projects(61102106,61102105)supported by the National Natural Science Foundation of ChinaProject(2013M530148)supported by China Postdoctoral Science Foundation+1 种基金Project(HEUCF140809)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(LBH-Z13054)supported by Heilongjiang Postdoctoral Fund,China
文摘In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorithm applies the membrane computing theory to quantum bee colony optimization(QBCO),which is an effective discrete optimization algorithm.The global convergence performance of MQBCO is proved by Markov theory,and the validity of MQBCO is verified by testing the classical benchmark functions.Then the proposed MQBCO algorithm is used to solve decision engine problems of cognitive radio system.By hybridizing the QBCO and membrane computing theory,the quantum state and observation state of the quantum bees can be well evolved within the membrane structure.Simulation results for cognitive radio system show that the proposed decision engine method is superior to the traditional intelligent decision engine algorithms in terms of convergence,precision and stability.Simulation experiments under different communication scenarios illustrate that the balance between three objective functions and the adapted parameter configuration is consistent with the weights of three normalized objective functions.
文摘The paper regards to problems of sales point performance being situated in the centres of big cities in Poland. Problems are investigated with the use of surveys being carried out in 900 sales points according to author's DORED (DORED-dobre rozwiazania dla dostaw in Polish, good solutions for delivery in English) program performance. The DORED program has been mentioned for the first time in Logistics (a Polish newspaper) in February, 2005. The developed topic has been the pilot project of DORED program. That was in Wroclaw City (Poland), where the regions of Przedmiescie swidnickie were the first test of method of the DORED program. The mentioned topic has encompassed the city logistic problems, land transportation and movement organization performance in the city centres.