In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional ...In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional device and increase the evaporation rate.All the parameters,including the temperature on the glass surface,the water temperature inside the evaporation zone,and the amount of water produced in both conventional and modified stepped solar stills are measured and compared.The efficiency of two devices and their exergy efficiency have been calculated.Finally,the economic analysis of both devices has been done to check the economic feasibility of the modified device.The amount of freshwater generated during one day was 2244.4 and 3076.2 mL/m^(2),respectively for the conventional and modified stepped solar stills.As a result,the amount of water produced in one day by modified stepped solar still is 35.5% more than the conventional one.Also,the costs for the conventional and modified stepped solar stills have been calculated as 0.0359 and 0.029$/(L·m^(-2)),respectively.展开更多
To understand the processes and energy dissipation performance caused by turbulence during the wave run-up over a stepped revetment,hydraulic model tests with steady flow conditions are conducted and correlated with u...To understand the processes and energy dissipation performance caused by turbulence during the wave run-up over a stepped revetment,hydraulic model tests with steady flow conditions are conducted and correlated with unsteady flow conditions of the wave run-up within a short time frame.Under irregular waves,the run-up reduction over a stepped revetment is dependent on the Iribarren number and decreases for decreasing Iribarren numbers.Velocity gradients are found to be similar in a steady and unsteady flow regime near the pseudo-bottom.展开更多
文摘In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional device and increase the evaporation rate.All the parameters,including the temperature on the glass surface,the water temperature inside the evaporation zone,and the amount of water produced in both conventional and modified stepped solar stills are measured and compared.The efficiency of two devices and their exergy efficiency have been calculated.Finally,the economic analysis of both devices has been done to check the economic feasibility of the modified device.The amount of freshwater generated during one day was 2244.4 and 3076.2 mL/m^(2),respectively for the conventional and modified stepped solar stills.As a result,the amount of water produced in one day by modified stepped solar still is 35.5% more than the conventional one.Also,the costs for the conventional and modified stepped solar stills have been calculated as 0.0359 and 0.029$/(L·m^(-2)),respectively.
基金part of the joint research project ‘wave STEPS’ funded by the German Federal Ministry of Education and Research(BMBF) through the German Coastal Engineering Research council(KFKI,03KIS108 and 03KIS119)
文摘To understand the processes and energy dissipation performance caused by turbulence during the wave run-up over a stepped revetment,hydraulic model tests with steady flow conditions are conducted and correlated with unsteady flow conditions of the wave run-up within a short time frame.Under irregular waves,the run-up reduction over a stepped revetment is dependent on the Iribarren number and decreases for decreasing Iribarren numbers.Velocity gradients are found to be similar in a steady and unsteady flow regime near the pseudo-bottom.