With the economic development, the problems of energy shortage become increasingly severe. As offshore wind energy has advantages, namely it is clean, renewable, not accounting for land area, without noise pollution, ...With the economic development, the problems of energy shortage become increasingly severe. As offshore wind energy has advantages, namely it is clean, renewable, not accounting for land area, without noise pollution, with large reserves, etc., which gradually attracts people's attention. In this paper, China's offshore annual average wind field and monthly average wind field under the mean climate state conditions are obtained, and the corresponding wind density distribution is calculated. China's offshore wind energy reserves and distribution conditions through the analysis of wind energy density distribution are summarized, and finally some suggestions for coastal offshore wind energy development and utilization in China are put forward.展开更多
[Objective] The aim was to explore the spatial and temporal distribution characteristics of wind energy resource and preservation in central and west area of Hexi Corridor. [Method] By dint of the wind speed data from...[Objective] The aim was to explore the spatial and temporal distribution characteristics of wind energy resource and preservation in central and west area of Hexi Corridor. [Method] By dint of the wind speed data from 1955 to 2007 in ten meteorological observation station in central and west area of Hexi Corridor,and special wind tower fine data from January to December in 2007,the distribution and reserves of the region's wind energy resources were studied. [Result] The results showed that environmental wind speed was relatively stable in central and west Hexi Corridor. There were no distinct changes in climate characteristics distribution. There were regional differences in the distribution of wind energy,and there was a large numerical area of wind energy in Gazhou County and Yumen City; Wind energy in the region generally was higher. The wind energy density was above 100 w/m2 in the 10 m layer,around 140 w/m2 in most places,and was more than 200 w/m2 in the large number area. The wind grew in vertical direction along with the linear growth of height. Each 10 m high wind increased to 15 w/m2 averagely,50m layer wind energy was greater than the general 240 w/m2 and there were obvious changes on daily and annual with wind energy in central and west area of Hexi Corridor. The duration from March to May was a wind energy-intensive stage,10m height from the ground in the wind around 10:00 in low-value. After growing from 11:00,it met the day largest number at 18:00,and then reduced gradually. Effective wind speed hours in the region in general were more than 6 200 h,and the value in the large areas was close to 7 600 h. [Conclusion] The study laid basis for the development and application of wind energy in central and west area of Hexi Corridor.展开更多
In the paper,daily near-surface wind speed data from 462 stations are used to study the spatiotemporal characteristics of the annual and seasonal mean wind speed(MWS)and effective wind energy density(EWED)from 1960 to...In the paper,daily near-surface wind speed data from 462 stations are used to study the spatiotemporal characteristics of the annual and seasonal mean wind speed(MWS)and effective wind energy density(EWED)from 1960 to 2016,through the methods of kriging interpolation,leastsquares,correlation coefficient testing,and empirical orthogonal function(EOF)analysis.The results show that the annual MWS is larger than 3 m s-1 and the EWED is larger than 75 W m-2 in northern China and parts of coastal areas.However,the MWS and EWED values in southern China are all smaller than in northern China.Over the past 50 years,the annual and seasonal MWS in China has shown a significant decreasing trend,with the largest rate of decline in spring for northern China and winter for coastal areas.The annual MWS in some areas of Guangdong has an increasing trend,but it shows little change in southwestern China,South China,and west of Central China.Where the MWS is high,the rate of decline is also high.The main spatial distributions of the annual MWS and the annual EWED show high consistency,with a decreasing trend year by year.The decreasing trend of wind speed and wind energy resources in China is mainly related to global warming and land use/cover change.展开更多
This study aims to develop a framework based on the Nadal formula to assess train derailment risk. Monte Carlo simulation was adopted to develop 10000 sets of random parameters to assess train derailment risk subject ...This study aims to develop a framework based on the Nadal formula to assess train derailment risk. Monte Carlo simulation was adopted to develop 10000 sets of random parameters to assess train derailment risk subject to the curvature radius of the track, the difference between the flange angle and the equivalent conicity, and accelerations from 250 to 989.22 gal during horizontal earthquake. The results indicated that railway in Taiwan, China has no derailment risk under normal conditions. However, when earthquakes occur, the derailment risk increases with the unloading factor which is caused by seismic force. The results also show that equivalent conicity increases derailment risk;as a result, equivalent conicity should be listed as one of maintenance priorities. In addition, among all train derailment factors, flange angle, equivalent conicity and unload factors are the most significant ones.展开更多
Earth tempering of stable air has attracted great attention as a sustainable air conditioning method in pig houses. At summer time air cooling of income air strongly reduces heat stress and required ventilation rate. ...Earth tempering of stable air has attracted great attention as a sustainable air conditioning method in pig houses. At summer time air cooling of income air strongly reduces heat stress and required ventilation rate. At winter time heating costs can be reduced. The effect of air condition using geothermal energy was investigated in a farrowing house. Underneath the foundation of the farrowing house 88 non perforated ribbed tubes (diameter: 20 cm) were piped in a depth of 1.6-2.0 m. Over a period of 12 month following data were recorded at hourly intervals and analyzed: outside air temperature, as well as air temperature in the air supply duct and in the compartments. Incoming air (supply duct) was heated up to 20 ℃ during winter time and in summer time cooled by up to 15 ℃ compared to the outside air temperature. In contrast to the outside air diurnal variation, temperature fluctuations of the incoming air were reduced by 90%. Due to cooling of the incoming air at summer time the stable inside temperature could be limited to maximal 29 ℃(maximum outside temperature was 35℃). Earth-tube heat exchangers with non perforated ribbed tubes were very efficient for air conditioning in farrowing houses. They were a cost effective supplement for sustainable cooling and heating of farrowing houses.展开更多
In contrast to the input perspective for evaluating planning metrics, this research takes the climatic environmental output effects as the starting point for assessing ecological city construction. Based on approaches...In contrast to the input perspective for evaluating planning metrics, this research takes the climatic environmental output effects as the starting point for assessing ecological city construction. Based on approaches such as observation data analysis, meteorological model simulation, and remote sensing, a set of climatic environmental performance assessment methods is developed and established. These methods mainly focus on surface ventilation assessment and urban thermal environment assessment. With the Yanqi Lake ecological development demonstration area located in Huairou district, Beijing as an example, the assessment of the local climatic environment before and after the construction are conducted, and relevant policy suggestions for urban planning and construction are presented. The results show that after development, the ventilation capacity will decrease overall and the ventilation potential index will decrease from 0.53 to 0.44. While this is not a large reduction, and is still at a favorable level, the ventilation potential in some local areas will markedly decrease. Furthermore, the thermal environment will become poorer to some extent; the urban heat island(UHI) area and intensity will increase compared with the current situation;continuous heat islands may occur in local areas; the UHI potential index of the core area will rise from 0.0878 to 0.1217(still a favorable level).Therefore, urban surfaces should be carefully developed and arranged during planning. It is suggested that the negative impacts of large areas of urban construction on the local climatic environment in the Yanqi Lake could be mitigated by 1) strengthening the airflow by introducing fresh,cold, northwesterly air via constructed ventilation corridors, 2) increasing the number of ecological cold sources, particularly for water bodies and green belts to prevent the UHI in the southern region of Yanqi Lake from becoming linked with each other, and 3) considering a pre-program before sub-domain and building planning to obtain optimum building locations. Different construction standards should be developed for different ventilation potential and UHI intensity levels. For strong heat island areas, land areas should be reserved to serve as cold sources.展开更多
To improve aerodynamic performance of wind turbine airfoils,the shape profile characteristic of the airfoil is investigated.Application of conformal transformation,one functional and integrated expression of wind turb...To improve aerodynamic performance of wind turbine airfoils,the shape profile characteristic of the airfoil is investigated.Application of conformal transformation,one functional and integrated expression of wind turbine airfoils is presented.Using the boundary layer theory,the aerodynamic model with roughness of wind turbine airfoils is introduced by studying flow separation around the airfoil.Based on the shape expression and aerodynamic performance of airfoils,the function design of wind turbine airfoils is carried out that the maximum lift-drag ratio and low roughness sensitivity are designed objects.Three wind turbines airfoils with different thickness are gained which are used at tip part of blades.As an example,the aerodynamic performance of one designed airfoil with relative thickness of 15%is simulated in different conditions of clean surface,rough surface,laminar flow and turbulent flow.The comparison of aerodynamic performance between the designed airfoil and one popular NACA airfoil is completed which can verify the better performance of the designed airfoil and reliability of the designed method.展开更多
Taizhou Yangtze River Highway Bridge is the first three-pylon two-span suspension bridge in China. The main girder adopts flat steamline steel closed box girder which has well wind-resistant capability and is technica...Taizhou Yangtze River Highway Bridge is the first three-pylon two-span suspension bridge in China. The main girder adopts flat steamline steel closed box girder which has well wind-resistant capability and is technically mature besides beautiful appearance. Straight web plates of the steel box girder in longitudinal direction are proposed in order to ensure the integrity of the steel box girder, and to keep the stress of the steel box girder continuous in the middle pylon, as well as to reduce the gradient of the middle pylon columns. The cross section of the box girder has one box with three cells. Solid-web diaphragm plate with good integrity and high torsional stiffness is adopted. The lifting lugs are utilized in the anchors of suspender cable. In this paper, selection of the cross section of the steel box girder, the general structure design, local structure design and main structure calculation results of Taizhou Yangtze River Bridge are introduced emphatically.展开更多
This work used the computational fluid dynamics method combined with full-scale train tests to analyze the train aerodynamic performance on special slope topography. Results show that with the increment in the slope g...This work used the computational fluid dynamics method combined with full-scale train tests to analyze the train aerodynamic performance on special slope topography. Results show that with the increment in the slope gradient, the aerodynamic forces and moment increase sharply. Compared with the flat ground condition, the lateral force, lift force, and overturning moment of the train on the first line increase by 153.2%, 53.4% and 124.7%, respectively, under the slope gradient of 20°. However, with the increment of the windward side's depth, the windbreak effect is improved obviously. When the depth is equal to 10 m, compared with the 0 m, the lateral force, lift force and overturning moment of the train on the first line decrease by 70.9%, 77.0% and 70.6%,respectively. Through analyzing the influence of slope parameters on the aerodynamic performance of the train, the relationships among them are established. All these will provide a basic reference for enhancing train aerodynamic performances under different slope conditions and achieve reasonable train speeds for the operation safety in different wind environments.展开更多
The study discusses accuracy evaluation methods for offshore wind energy resources by using scatterometer SeaWinds-derived wind speed and Weibull parameters. The purpose of this study is to evaluate accuracies of SeaW...The study discusses accuracy evaluation methods for offshore wind energy resources by using scatterometer SeaWinds-derived wind speed and Weibull parameters. The purpose of this study is to evaluate accuracies of SeaWinds-derived Weibull mean wind speed and energy density by considering uncertainties inherent in SeaWinds wind speed estimates. In this study, 1159 SeaWinds-derived wind speeds covering the KEO buoy are used for estimating two Weibull parameters, scale and shape. On the other hand, observed wind speeds from 2004 to 2008 at the KEO buoy are used for simulating three kinds of wind speeds in order to quantify some uncertainties inherent in SeaWinds-derived wind speeds. It is found that uncertainties associated with wind speed estimates (operational wind speed range, sampling time) show small differences in scale, shape and Weibull mean wind speed except energy density among the simulated datasets. Furthermore, the upper and lower bounds of 90% confidence interval corresponding to SeaWinds number of observations indicate 4-2.5% error of Weibull mean wind speed and 4-6.8% error of energy density, respectively.展开更多
A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and...A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.展开更多
Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In th...Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In this paper, according to the Chinese government's action plan for coping with climate change, the China's wind energy sustainable development goals and development route are discussed, and the countermeasures and suggestions are put forward. Wind energy is currently a kind of important renewable energy with matured technology which can be scale-up developed and put into commercial application, and in this transformation, wind energy will play a key role with other non-fossil energy sources. The development and utilization of wind energy is a systematic project, which needs to be solved from the aspects of policy, technology and management. At present, China is in the stage of transferring from "large wind power country" to "strong wind power country", opportunities and challenges coexist, and the advantages of China's socialist system could be fully used, which can concentrate power to do big things and make contribution in the process of realizing global energy transformation.展开更多
Mega shopping mall projects have seen dramatic growth and great development in recent years in Egypt. Many new mega shopping mall projects are under construction and expecting to start working in the few coming years....Mega shopping mall projects have seen dramatic growth and great development in recent years in Egypt. Many new mega shopping mall projects are under construction and expecting to start working in the few coming years. In the absence of researches studying the Egyptian mega shopping mall projects, this study tries to highlight the most critical risks that face these projects and the associated most effective response methods to be employed. The scope covers the analysis from different perspectives by including owners/developers, designers, consultants, project managers, and contractors that have previous experience in large-scale projects such as shopping mall projects. In this study, 30 construction project risks are classified into six main categories according to their type and 150 risk mitigation/elimination measures are introduced to overcome the impact of risks under each of these risk categories. The results reveal that the main risk category that faces the mega shopping mall projects in Egypt is the one including the financial risk factors. The most critical risk factor that faces these projects is the financial ability of the client. These results are similar to findings by previous researches conducted for large projects in other countries.展开更多
Union Hidalgo municipality in Oaxaca State, Mexico, is located in an area with attractive wind potential. For this reason, this paper presents a preliminary study of the technical feasibility of wind power generation ...Union Hidalgo municipality in Oaxaca State, Mexico, is located in an area with attractive wind potential. For this reason, this paper presents a preliminary study of the technical feasibility of wind power generation in Union Hidalgo, by a micro-study with a higher resolution than that used in Wind Resource Atlas of Oaxaea, published in April 2004. In this work, the wind map of Union Hidalgo was generated using the micro-scale model WAsP 9.1, with a resolution of 50 meters. Wind speed and direction data recorded at 15 m and 32 m agl (above ground level) over four years and seven months in a surface anemometer station were used. With Class 7 wind patterns, the results show values that justify the installation of wind turbines to produce electricity in the area. Estimated capacity factors (55% on average) are comparable with those obtained in wind power plants already operating in areas near Union Hidalgo and sites with high wind potential in other parts of the world. The topography of the study area is predominantly flat, and together with the directional behavior of the wind, which comes from the NNW 44% of the time, this favors the introduction of wind power plants in the area.展开更多
We detected a severe haze process in Guangzhou area with lidar and microwave radiometer, performed an inversion to get boundary layer height by wavelet covariance transform, and analyzed the correlation between meteor...We detected a severe haze process in Guangzhou area with lidar and microwave radiometer, performed an inversion to get boundary layer height by wavelet covariance transform, and analyzed the correlation between meteorological factors of boundary layer and visibility from the perspective of dynamical and thermodynamic structures. Our results indicate that the boundary layer height shows significant daily changes, consistent with ground visibility variation. During the cleaning process, the boundary layer height exceeded 1 km; during severe haze, the height was only 500 m. Temperature gradient of 50–100 m, which was 30 h lag, was remarkably correlated with visibility, with the correlation coefficient of 0.77. High layer visibility(255 m) and low layer stability were significantly anticorrelation, and the maximum anticorrelation coefficient was up to-0.76 in cleaning days and-0.49 in haze days. In the related boundary layer meteorological factors, surface ventilation coefficient was linearly correlated with ground visibility, with the greatest correlation coefficient of 0.88. The correlation coefficients of boundary layer height, ground wind velocity, relative humidity and ground visibility were 0.76, 0.67, and-0.77, respectively. There was a strong correlation between different meteorological factors. The dominant meteorological factor during this haze process was surface ventilation coefficient. In the area without boundary layer height sounding, ground visibility and wind velocity could be used to estimate boundary layer height.展开更多
A high-temperature-rise combustor that can be used in high-temperature wind tunnel is introduced in this study.Aviation kerosene is used in this type of combustor,with division combustion scheme and evaporator fuel-su...A high-temperature-rise combustor that can be used in high-temperature wind tunnel is introduced in this study.Aviation kerosene is used in this type of combustor,with division combustion scheme and evaporator fuel-supply device adopted.In the performance test under atmospheric pressure,when the inlet temperature is 500K and air flow is within the range of 1.5-3.0 kg/s,the outlet temperature can be precisely regulated within the range of 1050K-2100K.Moreover,higher uniformity of outlet temperature distribution and higher combustion efficiency can be achieved.After the long-time working in the wind tunnel,various components of the combustor,especially the combustor liners are checked without finding any anomaly such as thermal deformation.展开更多
A theoretical model is developed to establish an indepth understanding of the performance of a three-stage wind tower with a bypass system for indoor cooling in rural dry and hot climates. Model simulations are presen...A theoretical model is developed to establish an indepth understanding of the performance of a three-stage wind tower with a bypass system for indoor cooling in rural dry and hot climates. Model simulations are presented for a wide range of ambient conditions that include inlet wind speed, inlet temperature and relative humidity. Simulation results provide an insight into the desirable water flow rates and air-to-water loadings for comfort zone tem-peratures and relative humidity levels at the exit of the wind tower. Simulations show wind towers with variable cross-sections provide an increase in the cooling power for the same inlet wind speed, inlet air temperature and relative humidity when compared to wind towers with a constant cross-section. The study shall lead to a better understanding to designing wind towers that are both environmentally friendly and energy efficient.展开更多
In the solar system, our Sun is Nature's most efficient particle accelerator. In large solar flares and fast coronal mass ejections(CMEs), protons and heavy ions can be accelerated to over ~GeV/nucleon. Large flar...In the solar system, our Sun is Nature's most efficient particle accelerator. In large solar flares and fast coronal mass ejections(CMEs), protons and heavy ions can be accelerated to over ~GeV/nucleon. Large flares and fast CMEs often occur together. However there are clues that different acceleration mechanisms exist in these two processes. In solar flares, particles are accelerated at magnetic reconnection sites and stochastic acceleration likely dominates. In comparison, at CME-driven shocks,diffusive shock acceleration dominates. Besides solar flares and CMEs, which are transient events, acceleration of particles has also been observed in other places in the solar system, including the solar wind termination shock, planetary bow shocks, and shocks bounding the Corotation Interaction Regions(CIRs). Understanding how particles are accelerated in these places has been a central topic of space physics. However, because observations of energetic particles are often made at spacecraft near the Earth,propagation of energetic particles in the solar wind smears out many distinct features of the acceleration process. The propagation of a charged particle in the solar wind closely relates to the turbulent electric field and magnetic field of the solar wind through particle-wave interaction. A correct interpretation of the observations therefore requires a thorough understanding of the solar wind turbulence. Conversely, one can deduce properties of the solar wind turbulence from energetic particle observations. In this article I briefly review some of the current state of knowledge of particle acceleration and transport in the inner heliosphere and discuss a few topics which may bear the key features to further understand the problem of particle acceleration and transport.展开更多
文摘With the economic development, the problems of energy shortage become increasingly severe. As offshore wind energy has advantages, namely it is clean, renewable, not accounting for land area, without noise pollution, with large reserves, etc., which gradually attracts people's attention. In this paper, China's offshore annual average wind field and monthly average wind field under the mean climate state conditions are obtained, and the corresponding wind density distribution is calculated. China's offshore wind energy reserves and distribution conditions through the analysis of wind energy density distribution are summarized, and finally some suggestions for coastal offshore wind energy development and utilization in China are put forward.
基金Supported by National Natural Science Fund (41075008)Chinese Meteorological Climate Changes Program (280200S011000)Gansu Meteorological Bureau Climate Science and Research Program(2011-09)~~
文摘[Objective] The aim was to explore the spatial and temporal distribution characteristics of wind energy resource and preservation in central and west area of Hexi Corridor. [Method] By dint of the wind speed data from 1955 to 2007 in ten meteorological observation station in central and west area of Hexi Corridor,and special wind tower fine data from January to December in 2007,the distribution and reserves of the region's wind energy resources were studied. [Result] The results showed that environmental wind speed was relatively stable in central and west Hexi Corridor. There were no distinct changes in climate characteristics distribution. There were regional differences in the distribution of wind energy,and there was a large numerical area of wind energy in Gazhou County and Yumen City; Wind energy in the region generally was higher. The wind energy density was above 100 w/m2 in the 10 m layer,around 140 w/m2 in most places,and was more than 200 w/m2 in the large number area. The wind grew in vertical direction along with the linear growth of height. Each 10 m high wind increased to 15 w/m2 averagely,50m layer wind energy was greater than the general 240 w/m2 and there were obvious changes on daily and annual with wind energy in central and west area of Hexi Corridor. The duration from March to May was a wind energy-intensive stage,10m height from the ground in the wind around 10:00 in low-value. After growing from 11:00,it met the day largest number at 18:00,and then reduced gradually. Effective wind speed hours in the region in general were more than 6 200 h,and the value in the large areas was close to 7 600 h. [Conclusion] The study laid basis for the development and application of wind energy in central and west area of Hexi Corridor.
基金This work was supported by the National Key R&D Program of China[grant numbers 2016YFA0600403 and 2016YFA0602501]the General Project of the National Natural Science Foundation of China[grant number 41875134].
文摘In the paper,daily near-surface wind speed data from 462 stations are used to study the spatiotemporal characteristics of the annual and seasonal mean wind speed(MWS)and effective wind energy density(EWED)from 1960 to 2016,through the methods of kriging interpolation,leastsquares,correlation coefficient testing,and empirical orthogonal function(EOF)analysis.The results show that the annual MWS is larger than 3 m s-1 and the EWED is larger than 75 W m-2 in northern China and parts of coastal areas.However,the MWS and EWED values in southern China are all smaller than in northern China.Over the past 50 years,the annual and seasonal MWS in China has shown a significant decreasing trend,with the largest rate of decline in spring for northern China and winter for coastal areas.The annual MWS in some areas of Guangdong has an increasing trend,but it shows little change in southwestern China,South China,and west of Central China.Where the MWS is high,the rate of decline is also high.The main spatial distributions of the annual MWS and the annual EWED show high consistency,with a decreasing trend year by year.The decreasing trend of wind speed and wind energy resources in China is mainly related to global warming and land use/cover change.
文摘This study aims to develop a framework based on the Nadal formula to assess train derailment risk. Monte Carlo simulation was adopted to develop 10000 sets of random parameters to assess train derailment risk subject to the curvature radius of the track, the difference between the flange angle and the equivalent conicity, and accelerations from 250 to 989.22 gal during horizontal earthquake. The results indicated that railway in Taiwan, China has no derailment risk under normal conditions. However, when earthquakes occur, the derailment risk increases with the unloading factor which is caused by seismic force. The results also show that equivalent conicity increases derailment risk;as a result, equivalent conicity should be listed as one of maintenance priorities. In addition, among all train derailment factors, flange angle, equivalent conicity and unload factors are the most significant ones.
文摘Earth tempering of stable air has attracted great attention as a sustainable air conditioning method in pig houses. At summer time air cooling of income air strongly reduces heat stress and required ventilation rate. At winter time heating costs can be reduced. The effect of air condition using geothermal energy was investigated in a farrowing house. Underneath the foundation of the farrowing house 88 non perforated ribbed tubes (diameter: 20 cm) were piped in a depth of 1.6-2.0 m. Over a period of 12 month following data were recorded at hourly intervals and analyzed: outside air temperature, as well as air temperature in the air supply duct and in the compartments. Incoming air (supply duct) was heated up to 20 ℃ during winter time and in summer time cooled by up to 15 ℃ compared to the outside air temperature. In contrast to the outside air diurnal variation, temperature fluctuations of the incoming air were reduced by 90%. Due to cooling of the incoming air at summer time the stable inside temperature could be limited to maximal 29 ℃(maximum outside temperature was 35℃). Earth-tube heat exchangers with non perforated ribbed tubes were very efficient for air conditioning in farrowing houses. They were a cost effective supplement for sustainable cooling and heating of farrowing houses.
基金sponsored by Beijing Municipal Science and Technology Project(Z131100001113026)the Program of the Research and Innovation Team on Urban Climate Assessment of Beijing Meteorological Bureau,Climate Change Special Foundation of China Meteorology Administration(CCSF201506)+1 种基金Science and technology project of Beijing Meteorological Bureau(BMBKJ201402002)National Natural Science Foundation of China(71473146)
文摘In contrast to the input perspective for evaluating planning metrics, this research takes the climatic environmental output effects as the starting point for assessing ecological city construction. Based on approaches such as observation data analysis, meteorological model simulation, and remote sensing, a set of climatic environmental performance assessment methods is developed and established. These methods mainly focus on surface ventilation assessment and urban thermal environment assessment. With the Yanqi Lake ecological development demonstration area located in Huairou district, Beijing as an example, the assessment of the local climatic environment before and after the construction are conducted, and relevant policy suggestions for urban planning and construction are presented. The results show that after development, the ventilation capacity will decrease overall and the ventilation potential index will decrease from 0.53 to 0.44. While this is not a large reduction, and is still at a favorable level, the ventilation potential in some local areas will markedly decrease. Furthermore, the thermal environment will become poorer to some extent; the urban heat island(UHI) area and intensity will increase compared with the current situation;continuous heat islands may occur in local areas; the UHI potential index of the core area will rise from 0.0878 to 0.1217(still a favorable level).Therefore, urban surfaces should be carefully developed and arranged during planning. It is suggested that the negative impacts of large areas of urban construction on the local climatic environment in the Yanqi Lake could be mitigated by 1) strengthening the airflow by introducing fresh,cold, northwesterly air via constructed ventilation corridors, 2) increasing the number of ecological cold sources, particularly for water bodies and green belts to prevent the UHI in the southern region of Yanqi Lake from becoming linked with each other, and 3) considering a pre-program before sub-domain and building planning to obtain optimum building locations. Different construction standards should be developed for different ventilation potential and UHI intensity levels. For strong heat island areas, land areas should be reserved to serve as cold sources.
基金Supported by the National Natural Science Foundation of China(No.51205430)Natural Science Foundation of ChongQing(No.cstc2011ijA70002)China Postdoctoral Science Foundation(No.2013T60842)
文摘To improve aerodynamic performance of wind turbine airfoils,the shape profile characteristic of the airfoil is investigated.Application of conformal transformation,one functional and integrated expression of wind turbine airfoils is presented.Using the boundary layer theory,the aerodynamic model with roughness of wind turbine airfoils is introduced by studying flow separation around the airfoil.Based on the shape expression and aerodynamic performance of airfoils,the function design of wind turbine airfoils is carried out that the maximum lift-drag ratio and low roughness sensitivity are designed objects.Three wind turbines airfoils with different thickness are gained which are used at tip part of blades.As an example,the aerodynamic performance of one designed airfoil with relative thickness of 15%is simulated in different conditions of clean surface,rough surface,laminar flow and turbulent flow.The comparison of aerodynamic performance between the designed airfoil and one popular NACA airfoil is completed which can verify the better performance of the designed airfoil and reliability of the designed method.
基金National Science and Technology Support Program of China ( No. 2009BAG15B01) Key Programs for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-170)
文摘Taizhou Yangtze River Highway Bridge is the first three-pylon two-span suspension bridge in China. The main girder adopts flat steamline steel closed box girder which has well wind-resistant capability and is technically mature besides beautiful appearance. Straight web plates of the steel box girder in longitudinal direction are proposed in order to ensure the integrity of the steel box girder, and to keep the stress of the steel box girder continuous in the middle pylon, as well as to reduce the gradient of the middle pylon columns. The cross section of the box girder has one box with three cells. Solid-web diaphragm plate with good integrity and high torsional stiffness is adopted. The lifting lugs are utilized in the anchors of suspender cable. In this paper, selection of the cross section of the steel box girder, the general structure design, local structure design and main structure calculation results of Taizhou Yangtze River Bridge are introduced emphatically.
基金Projects(U1334205,U1134203)supported by the National Natural Science Foundation of ChinaProject(132014)supported by the Fok Ying Tong Education Foundation,ChinaProjects(2014T001-A,2015T002-A,2015J007-N)supported by China Railways Corporation
文摘This work used the computational fluid dynamics method combined with full-scale train tests to analyze the train aerodynamic performance on special slope topography. Results show that with the increment in the slope gradient, the aerodynamic forces and moment increase sharply. Compared with the flat ground condition, the lateral force, lift force, and overturning moment of the train on the first line increase by 153.2%, 53.4% and 124.7%, respectively, under the slope gradient of 20°. However, with the increment of the windward side's depth, the windbreak effect is improved obviously. When the depth is equal to 10 m, compared with the 0 m, the lateral force, lift force and overturning moment of the train on the first line decrease by 70.9%, 77.0% and 70.6%,respectively. Through analyzing the influence of slope parameters on the aerodynamic performance of the train, the relationships among them are established. All these will provide a basic reference for enhancing train aerodynamic performances under different slope conditions and achieve reasonable train speeds for the operation safety in different wind environments.
文摘The study discusses accuracy evaluation methods for offshore wind energy resources by using scatterometer SeaWinds-derived wind speed and Weibull parameters. The purpose of this study is to evaluate accuracies of SeaWinds-derived Weibull mean wind speed and energy density by considering uncertainties inherent in SeaWinds wind speed estimates. In this study, 1159 SeaWinds-derived wind speeds covering the KEO buoy are used for estimating two Weibull parameters, scale and shape. On the other hand, observed wind speeds from 2004 to 2008 at the KEO buoy are used for simulating three kinds of wind speeds in order to quantify some uncertainties inherent in SeaWinds-derived wind speeds. It is found that uncertainties associated with wind speed estimates (operational wind speed range, sampling time) show small differences in scale, shape and Weibull mean wind speed except energy density among the simulated datasets. Furthermore, the upper and lower bounds of 90% confidence interval corresponding to SeaWinds number of observations indicate 4-2.5% error of Weibull mean wind speed and 4-6.8% error of energy density, respectively.
基金Project(51175159)supported by the National Natural Science Foundation of ChinaProject(2013WK3024)supported by the Science andTechnology Planning Program of Hunan Province,ChinaProject(CX2013B146)supported by the Hunan Provincial InnovationFoundation for Postgraduate,China
文摘A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.
文摘Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In this paper, according to the Chinese government's action plan for coping with climate change, the China's wind energy sustainable development goals and development route are discussed, and the countermeasures and suggestions are put forward. Wind energy is currently a kind of important renewable energy with matured technology which can be scale-up developed and put into commercial application, and in this transformation, wind energy will play a key role with other non-fossil energy sources. The development and utilization of wind energy is a systematic project, which needs to be solved from the aspects of policy, technology and management. At present, China is in the stage of transferring from "large wind power country" to "strong wind power country", opportunities and challenges coexist, and the advantages of China's socialist system could be fully used, which can concentrate power to do big things and make contribution in the process of realizing global energy transformation.
文摘Mega shopping mall projects have seen dramatic growth and great development in recent years in Egypt. Many new mega shopping mall projects are under construction and expecting to start working in the few coming years. In the absence of researches studying the Egyptian mega shopping mall projects, this study tries to highlight the most critical risks that face these projects and the associated most effective response methods to be employed. The scope covers the analysis from different perspectives by including owners/developers, designers, consultants, project managers, and contractors that have previous experience in large-scale projects such as shopping mall projects. In this study, 30 construction project risks are classified into six main categories according to their type and 150 risk mitigation/elimination measures are introduced to overcome the impact of risks under each of these risk categories. The results reveal that the main risk category that faces the mega shopping mall projects in Egypt is the one including the financial risk factors. The most critical risk factor that faces these projects is the financial ability of the client. These results are similar to findings by previous researches conducted for large projects in other countries.
文摘Union Hidalgo municipality in Oaxaca State, Mexico, is located in an area with attractive wind potential. For this reason, this paper presents a preliminary study of the technical feasibility of wind power generation in Union Hidalgo, by a micro-study with a higher resolution than that used in Wind Resource Atlas of Oaxaea, published in April 2004. In this work, the wind map of Union Hidalgo was generated using the micro-scale model WAsP 9.1, with a resolution of 50 meters. Wind speed and direction data recorded at 15 m and 32 m agl (above ground level) over four years and seven months in a surface anemometer station were used. With Class 7 wind patterns, the results show values that justify the installation of wind turbines to produce electricity in the area. Estimated capacity factors (55% on average) are comparable with those obtained in wind power plants already operating in areas near Union Hidalgo and sites with high wind potential in other parts of the world. The topography of the study area is predominantly flat, and together with the directional behavior of the wind, which comes from the NNW 44% of the time, this favors the introduction of wind power plants in the area.
基金supported by the National Basic Research Program of China(Grant No.2011CB403403)the National Natural Science Foundation of China(Grant Nos.41205123,41375156,1175117)Guangdong Provincial Natural Science Foundation(Grant No.10151008019000004)
文摘We detected a severe haze process in Guangzhou area with lidar and microwave radiometer, performed an inversion to get boundary layer height by wavelet covariance transform, and analyzed the correlation between meteorological factors of boundary layer and visibility from the perspective of dynamical and thermodynamic structures. Our results indicate that the boundary layer height shows significant daily changes, consistent with ground visibility variation. During the cleaning process, the boundary layer height exceeded 1 km; during severe haze, the height was only 500 m. Temperature gradient of 50–100 m, which was 30 h lag, was remarkably correlated with visibility, with the correlation coefficient of 0.77. High layer visibility(255 m) and low layer stability were significantly anticorrelation, and the maximum anticorrelation coefficient was up to-0.76 in cleaning days and-0.49 in haze days. In the related boundary layer meteorological factors, surface ventilation coefficient was linearly correlated with ground visibility, with the greatest correlation coefficient of 0.88. The correlation coefficients of boundary layer height, ground wind velocity, relative humidity and ground visibility were 0.76, 0.67, and-0.77, respectively. There was a strong correlation between different meteorological factors. The dominant meteorological factor during this haze process was surface ventilation coefficient. In the area without boundary layer height sounding, ground visibility and wind velocity could be used to estimate boundary layer height.
文摘A high-temperature-rise combustor that can be used in high-temperature wind tunnel is introduced in this study.Aviation kerosene is used in this type of combustor,with division combustion scheme and evaporator fuel-supply device adopted.In the performance test under atmospheric pressure,when the inlet temperature is 500K and air flow is within the range of 1.5-3.0 kg/s,the outlet temperature can be precisely regulated within the range of 1050K-2100K.Moreover,higher uniformity of outlet temperature distribution and higher combustion efficiency can be achieved.After the long-time working in the wind tunnel,various components of the combustor,especially the combustor liners are checked without finding any anomaly such as thermal deformation.
文摘A theoretical model is developed to establish an indepth understanding of the performance of a three-stage wind tower with a bypass system for indoor cooling in rural dry and hot climates. Model simulations are presented for a wide range of ambient conditions that include inlet wind speed, inlet temperature and relative humidity. Simulation results provide an insight into the desirable water flow rates and air-to-water loadings for comfort zone tem-peratures and relative humidity levels at the exit of the wind tower. Simulations show wind towers with variable cross-sections provide an increase in the cooling power for the same inlet wind speed, inlet air temperature and relative humidity when compared to wind towers with a constant cross-section. The study shall lead to a better understanding to designing wind towers that are both environmentally friendly and energy efficient.
基金supported in part by a guest professorship grant from the School of Geophysics and Information Technology, China University of Geosciences (Beijing)
文摘In the solar system, our Sun is Nature's most efficient particle accelerator. In large solar flares and fast coronal mass ejections(CMEs), protons and heavy ions can be accelerated to over ~GeV/nucleon. Large flares and fast CMEs often occur together. However there are clues that different acceleration mechanisms exist in these two processes. In solar flares, particles are accelerated at magnetic reconnection sites and stochastic acceleration likely dominates. In comparison, at CME-driven shocks,diffusive shock acceleration dominates. Besides solar flares and CMEs, which are transient events, acceleration of particles has also been observed in other places in the solar system, including the solar wind termination shock, planetary bow shocks, and shocks bounding the Corotation Interaction Regions(CIRs). Understanding how particles are accelerated in these places has been a central topic of space physics. However, because observations of energetic particles are often made at spacecraft near the Earth,propagation of energetic particles in the solar wind smears out many distinct features of the acceleration process. The propagation of a charged particle in the solar wind closely relates to the turbulent electric field and magnetic field of the solar wind through particle-wave interaction. A correct interpretation of the observations therefore requires a thorough understanding of the solar wind turbulence. Conversely, one can deduce properties of the solar wind turbulence from energetic particle observations. In this article I briefly review some of the current state of knowledge of particle acceleration and transport in the inner heliosphere and discuss a few topics which may bear the key features to further understand the problem of particle acceleration and transport.