SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surfa...SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).展开更多
The growth and thermal stability of Au clusters on a partially-reduced rutile TiO2 (110)-1 × 1 surface were investigated by high-resolution photoelectron spectroscopy using synchrotron- radiation-light. The val...The growth and thermal stability of Au clusters on a partially-reduced rutile TiO2 (110)-1 × 1 surface were investigated by high-resolution photoelectron spectroscopy using synchrotron- radiation-light. The valence-band photoelectron spectroscopy results demonstrate that the Ti^3+3d feature attenuates quickly with the initial deposition of Au clusters, implying that Au clusters nucleate at the oxygen vacancy sites. The Au4f core-level photoelectron spectroscopy results directly prove the existence of charge transfer from oxygen vacancies to Au clusters. The thermal stability of Au clusters on the partially-reduced and stoichiometric TiO2(110) surfaces was also comparatively investigated by the annealing experiments. With the same film thickness, Au clusters are more thermally stable on the partially-reduced TiO2(110) surface than on the stoichiometric TiO2(110) surface. Meanwhile, large Au nanoparticles are more thermally stable than fine Au nanoparticles.展开更多
A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactiva...A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactivation of the catalysts were studied. N2 adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, H2 temperature‐programmed reduction, NH3 temperature‐programmed desorption, X‐ray photoelectron spectroscopy (XPS), thermal gravimetric analysis and Fourier transform infrared spectroscopy were used to character‐ize the catalysts. The 8Fe‐8Mn/Al2O3 catalyst gave 99%of NO conversion at 150?? and more than 92.6%NO conversion was obtained in a wide low temperature range of 90–210??. XPS analysis demonstrated that the Fe3+was the main iron valence state on the catalyst surface and the addition of Mn increased the accumulation of Fe on the surface. The higher specific surface area, enhanced dispersion of amorphous Fe and Mn, improved reduction properties and surface acidity, lower binding energy, higher Mn4+/Mn3+ratio and more adsorbed oxygen species resulted in higher NO conversion for the 8Fe‐8Mn/Al2O3 catalyst. In addition, the SCR activity of the 8Fe‐8Mn/Al2O3 cata‐lyst was only slightly decreased in the presence of H2O and SO2, which indicated that the catalyst had better tolerance to H2O and SO2. The reaction temperature was crucial for the SO2 resistance of catalyst and the decrease of catalytic activity caused by SO2 was mainly due to the sulfate salts formed on the catalyst.展开更多
The electronic states of the surface and interface of 3,4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA)/indium-tin-oxide (ITO) thin film are investigated using X-ray photoelectron spectroscopy (XPS). A- tom...The electronic states of the surface and interface of 3,4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA)/indium-tin-oxide (ITO) thin film are investigated using X-ray photoelectron spectroscopy (XPS). A- tomic force microscopy (AFM) is also applied to investigate the pattern of PTCDA/ITO film. XPS results show that there are two main peaks,which are associated with C atoms in the perylene rings and acid anhydride groups, located at 284.6 and 288.7eV, respectively,in the Cls spectrum of the original surface. It can be deduced from the emergence of a small peak at 290.4eV in the Cls spectrum that some C atoms are oxidized by O atoms from ITO. The binding energies of O atoms in C-O bonds and C--O---C bonds are 531.5 and 533.4eV respectively. At the interface,the peak at the high binding energy in the Cls spectrum disappears,and the peak value shifts about 0.2eV to lower binding energy, There is a significant 1.5eV chemical shift to lower binding energy in the Ols spectrum. These observations indicate that perylene rings inside PTCDA molecules are combined with In vacancies in the ITO at the interface. The AFM results show that PTCDA molecules formed an island-like structure a height of about 14nm. The sizes of the crystal grains are about 100--300nm. The island-like pattern comes from the delocalized π bonds of adjacent molecules in PTCDA and the combination of vacancies in ITO with perylene rings at the PTCDA/ITO interface.展开更多
We theoretically investigate the Autler-Townes (AT) splitting in the photoelectron spectra of three-level ladder K2 molecule driven by a pump-probe pulse via employing the time- dependent wave packet approach. The d...We theoretically investigate the Autler-Townes (AT) splitting in the photoelectron spectra of three-level ladder K2 molecule driven by a pump-probe pulse via employing the time- dependent wave packet approach. The dependence of AT splitting on two laser intensities and wavelengths are studied in detail. We firstly quantify these effects on peak shift and AT separation. The photoelectron spectra show double splitting with symmetric profiles, but with asymmetric profiles when the wavelength is changed. The magnitude of AT splitting increases with the pump laser intensity, but does not vary with probe intensity. The shifts of the absorption peaks and the splitting between AT doublet are predicted by using an analyt- ical fitting function when the intensity/wavelength of one of the two fields is changed. These novel results are of importance for the molecular spectroscopy and may further stimulate the first principles theoretical studies analytically.展开更多
[Objective] The aim was to improve the adhesive bonding property of wheat straw surface to prepare wheat straw particleboard of soy protein isolate (SPI) adhesive through chemical and enzyme treatments. [Method] Eva...[Objective] The aim was to improve the adhesive bonding property of wheat straw surface to prepare wheat straw particleboard of soy protein isolate (SPI) adhesive through chemical and enzyme treatments. [Method] Evaluation and analysis were made on wettability of wheat straws in the control group and treated groups (chemical and enzyme treatments) by means of measurement of contact angle and calculation of spreading-penetration parameters (K). In addition, we made analysis on surface elements through X-ray photoelectron spectroscopy (XPS). [Result] The re- sults showed that K value of straw treated with sodium hydroxide, hydrogen peroxide and lipase increased by 58.0%, 48.7% and 83.2% compared to that of control group, respectively. The XPS analysis indicated that rapid decrease of silicon content and destruction of wax layer greatly contributed to wettability improvement of wheat straw surface. [Conclusion] The chemical and lipase treatments of wheat straw provided technical support for manufacture of wheat straw particle boand.展开更多
A series of CH2, NH, O, and Se substituted 2,1,3-benzothiadiazote derivatives have been designed and investigated computationally to elucidate their potential as organic light-emitting materials for organic light-emit...A series of CH2, NH, O, and Se substituted 2,1,3-benzothiadiazote derivatives have been designed and investigated computationally to elucidate their potential as organic light-emitting materials for organic light-emitting diodes. Both ab initio Hartree-Foek and hybrid density functional methods are used. It is found that S by CH2, NH, O, and Se makes it possible transport properties of the pristine molecule adjusting the central aromatic ring by replacing to fine-tune the electronic, optical, and charge展开更多
Red-emission (Y0.95Eu0.05)2O3 submicron spheres and microplates were selectively obtained via hydrothermal precursor synthesis (150 °C, 12 h) followed by calcination at 1000 °C. Characterizations of the ...Red-emission (Y0.95Eu0.05)2O3 submicron spheres and microplates were selectively obtained via hydrothermal precursor synthesis (150 °C, 12 h) followed by calcination at 1000 °C. Characterizations of the products were carried out by combined means of XRD, FT-IR, FE-SEM and PL analysis. The precursors could be modulated from basic-carbonate submicron spheres to normal carbonate microplates by increasing the molar ratio of urea to Y+Eu from 10 to 40-100. The resultant oxides largely retain their respective precursor morphologies at 1000 °C, but morphology confined crystal growth was observed for the microplates, yielding more enhanced exposure of the (400) facets. Both the (Y0.95Eu0.05)2O3 spheres and microplates exhibit nearly identical positions of the PL bands and similar asymmetry factors of luminescence [I(5D0→7F2)/I(5D0→7F1), ~11] under 250 nm excitation, but the microplates show a significantly strong red emission at ~613 nm ( ~1.33 times that of the spheres) owing to their larger particle size and denser packing of primary phosphor crystallites.展开更多
Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, ...Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.展开更多
Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface c...Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.展开更多
We investigated the structural evolution and elecfronic properties of ConC3-/0 and ConC4-/0 (n=1-4) clusters by using mass-selected photoelectron spectroscopy and density functional theory calculations. The adiabati...We investigated the structural evolution and elecfronic properties of ConC3-/0 and ConC4-/0 (n=1-4) clusters by using mass-selected photoelectron spectroscopy and density functional theory calculations. The adiabatic and vertical detachment energies of CO1-4C3- and COl-4C4- were obtained from their photoelectron spectra. By comparing the theoretical results with the experimental data, the global minimum structures were determined. The results indicate that the carbon atoms of ConC3-/0 and ConC4-/0 (n=1-4) are separated from each other gradually with increasing number of cobalt atoms but a C2 unit still remains at n=4. It is interesting that the Co2C3- and Co2C4- anions have planar structures whereas the neutral Co2C3 and Co2C4 have linear structures with the Co atoms at two ends. The Co3C3- anion has a planar structure with a Co2C2 four-membered ring and a Co3C four-membered ring sharing a Co-Co bond, while the neutral Co3C3 is a three-dimensional structure with a C2 unit and a C atom connecting to two faces of the Co3 triangle.展开更多
The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chai...The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chain logistics,intelligent devices,and technologies have become important carriers for improving the efficiency of cold chain logistics in fruit and vegetable production areas,extending the shelf life of fruits and vegetables,and reducing fruit and vegetable losses.They have many advantages in fruit and vegetable pre-cooling,sorting and packaging,testing,warehousing,transportation,and other aspects.This article summarizes the rapidly developing and widely used intelligent technologies at home and abroad in recent years,including automated guided vehicle intelligent handling based on electromagnetic or optical technology,intelligent sorting based on sensors,electronic optics,and other technologies,intelligent detection based on computer vision technology,intelligent transportation based on perspective imaging technology,etc.It analyses and studies the innovative research and achievements of various scholars in applying intelligent technology in fruit and vegetable cold chain storage,sorting,detection,transportation,and other links,and improves the efficiency of fruit and vegetable cold chain logistics.However,applying intelligent technology in fruit and vegetable cold chain logistics also faces many problems.The challenges of high cost,difficulty in technological integration,and talent shortages have limited the development of intelligent technology in the field of fruit and vegetable cold chains.To solve the current problems,it is proposed that costs be controlled through independent research and development,technological innovation,and other means to lower the entry threshold for small enterprises.Strengthen integrating intelligent technology and cold chain logistics systems to improve data security and system compatibility.At the same time,the government should introduce relevant policies,provide necessary financial support,and establish talent training mechanisms.Accelerate the development and improvement of intelligent technology standards in the field of cold chain logistics.Through technological innovation,cost control,talent cultivation,and policy guidance,we aim to promote the upgrading of the agricultural industry and provide ideas for improving the quality and efficiency of fruit and vegetable cold chain logistics.展开更多
The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna co...The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna complex assembled onto TiO2 nanoparticle with an average size of 8 nm in diameter. Crystal structure shows that photosynthetic bacterial antenna complex LH2 has a ring-like structure composed by alpha- and beta-apoprotein helices. The alpha- and beta-transmembrance helices construct two concentric cylinders with pigments bacteriochlorophyll a (Bchl a) and carotenoid (Car) buried inside the protein. We attempt to insert TiO2 nanoparticle into the cavity of the inner cylindrical hollow of LH2 to investigate the nature of the electron transfer between the excited-state Bchl a and the TiO2 nanoparticle. A significant decrease in the ground state bleaching recovery time constant for Bchl a at 850 run (B850) in respect to that of the Bchl a in free LH2 has been observed. By using the relation of distance-dependent long-range electron transfer rate in protein, the distance between the donor B850 and the acceptor TiO2 nanoparticle has been estimated, which is about 0.6 nm. The proposed method of assembling proteins onto wide-gap semiconductor nanoparticle can be a promising way to determine the role of the protein playing in biological electron transfer processes.展开更多
The first three-dimensional interaction potential energy surface (PES) of the Ar2-Ne complex is developed using the single and double excitation coupled cluster theory with noniterative treatment of triple excitatio...The first three-dimensional interaction potential energy surface (PES) of the Ar2-Ne complex is developed using the single and double excitation coupled cluster theory with noniterative treatment of triple excitations CCSD(T). The aug-cc-pVQZ basis sets are employed for all atoms, including an additional (3s3p2d2flg) set of midpoint bond functions. The calculated single point energies are fitted to an analytic two-dimensional potential model at each of seven fixed rAr~ values. The seven model potentials are then used to construct the three- dimensional PES by interpolating along (r-re) using a sixth-order polynomial. The PES is used in the following rovibrational energy levels calculations. The comparisons of theoretical transition frequencies and spectroscopic constants with the experimental results are given.展开更多
Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was ap...Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was applied to reduce the dimensions of spectral data, give information regarding a potential capability of separation of objects, and provide principal component (PC) scores for radial basis function neural networks (RBFNN). RBFNN was used to detect bayberry juice adulterant. Multiplicative scatter correction (MSC) and standard normal variate (SNV) transformation were used to preprocess spectra. The results demonstrate that PC-RBFNN with optimum parameters can separate pure bayberry juice samples from water-adulterated bayberry at a recognition rate of 97.62%, but cannot clearly detect water levels in the adulterated bayberry juice. We conclude that NIR technology can be successfully applied to detect water-adulterated bayberry juice.展开更多
The growth pattern and electronic properties of TiGen^- (n=7-12) clusters were investigated using anion photoelectron spectroscopy and density functional theory calculations. For both anionic and neutral TiGen clust...The growth pattern and electronic properties of TiGen^- (n=7-12) clusters were investigated using anion photoelectron spectroscopy and density functional theory calculations. For both anionic and neutral TiGen clusters, a half-encapsulated boat-shaped structure appears at n=8, and the boat-shaped structure is gradually covered by the additional Ge atoms to form Gen cage at n=9-11. TiGe12^- cluster has a distorted hexagonal prism cage structure. According to the natural population analysis, the electron transfers from the Gen framework to the Ti atom for TiGen^-/0 clusters at n=8-12, implying that the electron transfer pattern is related to the structural evolution.展开更多
A new velocity map imaging spectrometer is constructed for molecular reaction dynamics studies using time-resolved photoelectron/ion spectroscopy method. By combining a kHz pulsed valve and an ICCD camera, this veloci...A new velocity map imaging spectrometer is constructed for molecular reaction dynamics studies using time-resolved photoelectron/ion spectroscopy method. By combining a kHz pulsed valve and an ICCD camera, this velocity map imaging spectrometer can be run at a repetition rate of 1 kHz, totally compatible with the fs Ti:Sapphire laser system, facilitating time-resolved studies in gas phase which are usually time-consuming. Time-resolved velocity map imaging study of NH3 photodissociation at 200 nm was performed and the time-resolved total kinetic energy release spectrum of H+NH~ products provides rich information about the dissociation dynamics of NH3. These results show that this new apparatus is a powerful tool for investigating the molecular reaction dynamics using time-resolved methods.展开更多
Using the composite field observational data collected in the area south of the Nanling Mts. and numerical modeling, the seasonal features of dense fog and visibility, fog drop spectrum and physical concept of fog for...Using the composite field observational data collected in the area south of the Nanling Mts. and numerical modeling, the seasonal features of dense fog and visibility, fog drop spectrum and physical concept of fog forming have been analyzed. The occurring frequency of low visibility(≤200 m) is very high with a mean of 24.7%, a maximum of 41.8% from the end of autumn to winter and next spring. The fog processes that occur in the area south of the Nanling Mts. in spring and winter result from the interactions of complicated micro-physical processes, the local terrain, water vapor transportation and the influencing weather system. The fog processes are arisen from advection or windward slope, which is much different from the radiation fog. Cooling condensation due to the air lifted by the local mountain plays an important role in fog formation. Windward slope of the mountain is favorable to the fog formation. Dense fog can occur at lower altitudes in the windward slope of mountain, resulting in the lower visibility. The fog is mainly of small-drop spectrum with smaller number-density than that of urban fog, and its drop spectrum has descending trend in the section of smaller diameter. The inverse relationship between fog water content and visibility is the best among several relationships of micro-variables. In addition to micro-physical processes of fog body itself, the motion of irregular climbing and crossing over hillside while the fog body is being transported by the wind are also important reasons for the fluctuation of micro-physical parameters such as fog water content.展开更多
Er3+-doped TeO2-ZnO-Na2O-B2O3-GeO2 (TZNBG) glasses were prepared by melt-quenching method. Differential scanning calorimetry (DSC) and thermal mechanical analysis (TMA) were used to calculate thermal parameters...Er3+-doped TeO2-ZnO-Na2O-B2O3-GeO2 (TZNBG) glasses were prepared by melt-quenching method. Differential scanning calorimetry (DSC) and thermal mechanical analysis (TMA) were used to calculate thermal parameters: crystallization temperature (Tx), glass transition temperature (Tg) and thermal expansion (α). Besides, Judd-Ofelt theory is applied to analyzing absorption spectra. Intensity parameters -λ (λ=2, 4, 6), transition probabilities Aed, radiative lifetime τi, and branching ratios β of Er3+ transitions were obtained. Emission cross-section σemis of 4I13/2→4I15/2 transition of Er3+ was calculated according to the theory of McCumber. All of the parameters indicate that the thermal stability and optical properties of Er3+-doped TZNBG glasses are improved effectively.展开更多
Traditional ligand-field theory has to be improved by taking into account both 'pure electronic' contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of ...Traditional ligand-field theory has to be improved by taking into account both 'pure electronic' contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, R1, R2, R'3, R'2, and R'1 lines, U band, ground-state zero-field-splitting (GSZFS), and ground-state g factors of ruby and/or GSGG: Cr3+ as well as thermal shifts of GSZFS, R1 line and R2 line of ruby have been calculated.The results are in very good agreement with the experimental data. Moreover, it is found that the value of cubic-field parameter given by traditional ligand-field theory is inappropriately large. For thermal shifts of GSZFS, R1 line and R2 line of ruby, several conclusions have also been obtained.展开更多
基金Projects(60806032,20975107) supported by the National Natural Science Foundation of ChinaProject(2009R10064) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Education Ministry,China+2 种基金 Project(2009R10064) supported by "Qianjiang Talent Program"Projects(2009A610058,2009A610030) supported by the Ningbo Natural Science Foundation,ChinaProject supported by K.C.WONG Magna Fund in Ningbo University,China
文摘SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20773113 and No.20803072), the Hundred Talent Program of Chinese Academy of Sciences, the MOE Program for Changjiang Scholars and Innovative Research Team (No.IRT0756), and the MPG-CAS Partner-group Program.
文摘The growth and thermal stability of Au clusters on a partially-reduced rutile TiO2 (110)-1 × 1 surface were investigated by high-resolution photoelectron spectroscopy using synchrotron- radiation-light. The valence-band photoelectron spectroscopy results demonstrate that the Ti^3+3d feature attenuates quickly with the initial deposition of Au clusters, implying that Au clusters nucleate at the oxygen vacancy sites. The Au4f core-level photoelectron spectroscopy results directly prove the existence of charge transfer from oxygen vacancies to Au clusters. The thermal stability of Au clusters on the partially-reduced and stoichiometric TiO2(110) surfaces was also comparatively investigated by the annealing experiments. With the same film thickness, Au clusters are more thermally stable on the partially-reduced TiO2(110) surface than on the stoichiometric TiO2(110) surface. Meanwhile, large Au nanoparticles are more thermally stable than fine Au nanoparticles.
基金supported by the National High Technology Research and Development Program of China (863 Program,2015AA03A401)the National Natural Science Foundation of China (51276039)+1 种基金the Fundamental Research Funds for the Central Universities (020514380020,020514380030)the Postdoctoral Science Foundation of Jiangsu Province,China (1501033A)~~
文摘A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactivation of the catalysts were studied. N2 adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, H2 temperature‐programmed reduction, NH3 temperature‐programmed desorption, X‐ray photoelectron spectroscopy (XPS), thermal gravimetric analysis and Fourier transform infrared spectroscopy were used to character‐ize the catalysts. The 8Fe‐8Mn/Al2O3 catalyst gave 99%of NO conversion at 150?? and more than 92.6%NO conversion was obtained in a wide low temperature range of 90–210??. XPS analysis demonstrated that the Fe3+was the main iron valence state on the catalyst surface and the addition of Mn increased the accumulation of Fe on the surface. The higher specific surface area, enhanced dispersion of amorphous Fe and Mn, improved reduction properties and surface acidity, lower binding energy, higher Mn4+/Mn3+ratio and more adsorbed oxygen species resulted in higher NO conversion for the 8Fe‐8Mn/Al2O3 catalyst. In addition, the SCR activity of the 8Fe‐8Mn/Al2O3 cata‐lyst was only slightly decreased in the presence of H2O and SO2, which indicated that the catalyst had better tolerance to H2O and SO2. The reaction temperature was crucial for the SO2 resistance of catalyst and the decrease of catalytic activity caused by SO2 was mainly due to the sulfate salts formed on the catalyst.
文摘The electronic states of the surface and interface of 3,4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA)/indium-tin-oxide (ITO) thin film are investigated using X-ray photoelectron spectroscopy (XPS). A- tomic force microscopy (AFM) is also applied to investigate the pattern of PTCDA/ITO film. XPS results show that there are two main peaks,which are associated with C atoms in the perylene rings and acid anhydride groups, located at 284.6 and 288.7eV, respectively,in the Cls spectrum of the original surface. It can be deduced from the emergence of a small peak at 290.4eV in the Cls spectrum that some C atoms are oxidized by O atoms from ITO. The binding energies of O atoms in C-O bonds and C--O---C bonds are 531.5 and 533.4eV respectively. At the interface,the peak at the high binding energy in the Cls spectrum disappears,and the peak value shifts about 0.2eV to lower binding energy, There is a significant 1.5eV chemical shift to lower binding energy in the Ols spectrum. These observations indicate that perylene rings inside PTCDA molecules are combined with In vacancies in the ITO at the interface. The AFM results show that PTCDA molecules formed an island-like structure a height of about 14nm. The sizes of the crystal grains are about 100--300nm. The island-like pattern comes from the delocalized π bonds of adjacent molecules in PTCDA and the combination of vacancies in ITO with perylene rings at the PTCDA/ITO interface.
基金The code used in our calculation is provided by Pro- fessor Ke-li Han from Dalian Institute of Chemical Physics, Chinese Academy of Science, and we appreci- ate his help and kind advice. This work was supported by the National Natural Science Foundation of China (No.11447020), the Natural Science Foundation of Hu- nan province (No.2015JJ3104), and the Scientific Re- search Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
文摘We theoretically investigate the Autler-Townes (AT) splitting in the photoelectron spectra of three-level ladder K2 molecule driven by a pump-probe pulse via employing the time- dependent wave packet approach. The dependence of AT splitting on two laser intensities and wavelengths are studied in detail. We firstly quantify these effects on peak shift and AT separation. The photoelectron spectra show double splitting with symmetric profiles, but with asymmetric profiles when the wavelength is changed. The magnitude of AT splitting increases with the pump laser intensity, but does not vary with probe intensity. The shifts of the absorption peaks and the splitting between AT doublet are predicted by using an analyt- ical fitting function when the intensity/wavelength of one of the two fields is changed. These novel results are of importance for the molecular spectroscopy and may further stimulate the first principles theoretical studies analytically.
基金Supported by the Project of Returned Overseas of Harbin Science and Technology Bureau(RC2010LX002005)the Project of Science and Technology Department of Heilongjiang Province(LC07C27)~~
文摘[Objective] The aim was to improve the adhesive bonding property of wheat straw surface to prepare wheat straw particleboard of soy protein isolate (SPI) adhesive through chemical and enzyme treatments. [Method] Evaluation and analysis were made on wettability of wheat straws in the control group and treated groups (chemical and enzyme treatments) by means of measurement of contact angle and calculation of spreading-penetration parameters (K). In addition, we made analysis on surface elements through X-ray photoelectron spectroscopy (XPS). [Result] The re- sults showed that K value of straw treated with sodium hydroxide, hydrogen peroxide and lipase increased by 58.0%, 48.7% and 83.2% compared to that of control group, respectively. The XPS analysis indicated that rapid decrease of silicon content and destruction of wax layer greatly contributed to wettability improvement of wheat straw surface. [Conclusion] The chemical and lipase treatments of wheat straw provided technical support for manufacture of wheat straw particle boand.
文摘A series of CH2, NH, O, and Se substituted 2,1,3-benzothiadiazote derivatives have been designed and investigated computationally to elucidate their potential as organic light-emitting materials for organic light-emitting diodes. Both ab initio Hartree-Foek and hybrid density functional methods are used. It is found that S by CH2, NH, O, and Se makes it possible transport properties of the pristine molecule adjusting the central aromatic ring by replacing to fine-tune the electronic, optical, and charge
基金Projects (50172030, 50972025, 50990303, 51172038) supported by the National Natural Science Foundation of ChinaProject supported by the Liaoning BaiQianWan Talents Program, China+1 种基金Projects (N110802001, N100702001) supported by the Fundamental Research Funds for the Central Universities, ChinaProject supported by the China Scholarship Council
文摘Red-emission (Y0.95Eu0.05)2O3 submicron spheres and microplates were selectively obtained via hydrothermal precursor synthesis (150 °C, 12 h) followed by calcination at 1000 °C. Characterizations of the products were carried out by combined means of XRD, FT-IR, FE-SEM and PL analysis. The precursors could be modulated from basic-carbonate submicron spheres to normal carbonate microplates by increasing the molar ratio of urea to Y+Eu from 10 to 40-100. The resultant oxides largely retain their respective precursor morphologies at 1000 °C, but morphology confined crystal growth was observed for the microplates, yielding more enhanced exposure of the (400) facets. Both the (Y0.95Eu0.05)2O3 spheres and microplates exhibit nearly identical positions of the PL bands and similar asymmetry factors of luminescence [I(5D0→7F2)/I(5D0→7F1), ~11] under 250 nm excitation, but the microplates show a significantly strong red emission at ~613 nm ( ~1.33 times that of the spheres) owing to their larger particle size and denser packing of primary phosphor crystallites.
文摘Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.
基金supported by the National Basic Research Program of China(973 Program,2013CB933102)the National Natural Science Foundation of China(21273178,21573180,91545204)Xiamen-Zhuoyue Biomass Energy Co.Ltd~~
文摘Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.
文摘We investigated the structural evolution and elecfronic properties of ConC3-/0 and ConC4-/0 (n=1-4) clusters by using mass-selected photoelectron spectroscopy and density functional theory calculations. The adiabatic and vertical detachment energies of CO1-4C3- and COl-4C4- were obtained from their photoelectron spectra. By comparing the theoretical results with the experimental data, the global minimum structures were determined. The results indicate that the carbon atoms of ConC3-/0 and ConC4-/0 (n=1-4) are separated from each other gradually with increasing number of cobalt atoms but a C2 unit still remains at n=4. It is interesting that the Co2C3- and Co2C4- anions have planar structures whereas the neutral Co2C3 and Co2C4 have linear structures with the Co atoms at two ends. The Co3C3- anion has a planar structure with a Co2C2 four-membered ring and a Co3C four-membered ring sharing a Co-Co bond, while the neutral Co3C3 is a three-dimensional structure with a C2 unit and a C atom connecting to two faces of the Co3 triangle.
基金National Natural Science Foundation of China(32301718)Chinese Academy of Agricultural Sciences under the Special Institute-level Coordination Project for Basic Research Operating Costs(S202328)。
文摘The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chain logistics,intelligent devices,and technologies have become important carriers for improving the efficiency of cold chain logistics in fruit and vegetable production areas,extending the shelf life of fruits and vegetables,and reducing fruit and vegetable losses.They have many advantages in fruit and vegetable pre-cooling,sorting and packaging,testing,warehousing,transportation,and other aspects.This article summarizes the rapidly developing and widely used intelligent technologies at home and abroad in recent years,including automated guided vehicle intelligent handling based on electromagnetic or optical technology,intelligent sorting based on sensors,electronic optics,and other technologies,intelligent detection based on computer vision technology,intelligent transportation based on perspective imaging technology,etc.It analyses and studies the innovative research and achievements of various scholars in applying intelligent technology in fruit and vegetable cold chain storage,sorting,detection,transportation,and other links,and improves the efficiency of fruit and vegetable cold chain logistics.However,applying intelligent technology in fruit and vegetable cold chain logistics also faces many problems.The challenges of high cost,difficulty in technological integration,and talent shortages have limited the development of intelligent technology in the field of fruit and vegetable cold chains.To solve the current problems,it is proposed that costs be controlled through independent research and development,technological innovation,and other means to lower the entry threshold for small enterprises.Strengthen integrating intelligent technology and cold chain logistics systems to improve data security and system compatibility.At the same time,the government should introduce relevant policies,provide necessary financial support,and establish talent training mechanisms.Accelerate the development and improvement of intelligent technology standards in the field of cold chain logistics.Through technological innovation,cost control,talent cultivation,and policy guidance,we aim to promote the upgrading of the agricultural industry and provide ideas for improving the quality and efficiency of fruit and vegetable cold chain logistics.
文摘The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna complex assembled onto TiO2 nanoparticle with an average size of 8 nm in diameter. Crystal structure shows that photosynthetic bacterial antenna complex LH2 has a ring-like structure composed by alpha- and beta-apoprotein helices. The alpha- and beta-transmembrance helices construct two concentric cylinders with pigments bacteriochlorophyll a (Bchl a) and carotenoid (Car) buried inside the protein. We attempt to insert TiO2 nanoparticle into the cavity of the inner cylindrical hollow of LH2 to investigate the nature of the electron transfer between the excited-state Bchl a and the TiO2 nanoparticle. A significant decrease in the ground state bleaching recovery time constant for Bchl a at 850 run (B850) in respect to that of the Bchl a in free LH2 has been observed. By using the relation of distance-dependent long-range electron transfer rate in protein, the distance between the donor B850 and the acceptor TiO2 nanoparticle has been estimated, which is about 0.6 nm. The proposed method of assembling proteins onto wide-gap semiconductor nanoparticle can be a promising way to determine the role of the protein playing in biological electron transfer processes.
文摘The first three-dimensional interaction potential energy surface (PES) of the Ar2-Ne complex is developed using the single and double excitation coupled cluster theory with noniterative treatment of triple excitations CCSD(T). The aug-cc-pVQZ basis sets are employed for all atoms, including an additional (3s3p2d2flg) set of midpoint bond functions. The calculated single point energies are fitted to an analytic two-dimensional potential model at each of seven fixed rAr~ values. The seven model potentials are then used to construct the three- dimensional PES by interpolating along (r-re) using a sixth-order polynomial. The PES is used in the following rovibrational energy levels calculations. The comparisons of theoretical transition frequencies and spectroscopic constants with the experimental results are given.
基金supported by the National Natural Science Foundation of China (Nos. 60778024 and 30825027)the National Basic Re-search Program (973) of China (No. 2006BAD11A12)
文摘Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was applied to reduce the dimensions of spectral data, give information regarding a potential capability of separation of objects, and provide principal component (PC) scores for radial basis function neural networks (RBFNN). RBFNN was used to detect bayberry juice adulterant. Multiplicative scatter correction (MSC) and standard normal variate (SNV) transformation were used to preprocess spectra. The results demonstrate that PC-RBFNN with optimum parameters can separate pure bayberry juice samples from water-adulterated bayberry at a recognition rate of 97.62%, but cannot clearly detect water levels in the adulterated bayberry juice. We conclude that NIR technology can be successfully applied to detect water-adulterated bayberry juice.
基金Wei-jun Zheng acknowledges the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KJCX2-EW-H01) and Hong-guang Xu acknowl- edges the National Natural Science Foundation of China (No.21103202) for financial support. The theoretical calculations were conducted on the ScGrid and Deep- Comp 7000 of the Supercomputing Center, Computer Network Information Center of the Chinese Academy of Sciences.
文摘The growth pattern and electronic properties of TiGen^- (n=7-12) clusters were investigated using anion photoelectron spectroscopy and density functional theory calculations. For both anionic and neutral TiGen clusters, a half-encapsulated boat-shaped structure appears at n=8, and the boat-shaped structure is gradually covered by the additional Ge atoms to form Gen cage at n=9-11. TiGe12^- cluster has a distorted hexagonal prism cage structure. According to the natural population analysis, the electron transfers from the Gen framework to the Ti atom for TiGen^-/0 clusters at n=8-12, implying that the electron transfer pattern is related to the structural evolution.
基金This work was supported by the National Basic Research Program of China (No.2013CB922200), the Ministry of Science and Technology of China (No.2012YQ12004704), and the National Natural Science Foundation of China (No.21573228).
文摘A new velocity map imaging spectrometer is constructed for molecular reaction dynamics studies using time-resolved photoelectron/ion spectroscopy method. By combining a kHz pulsed valve and an ICCD camera, this velocity map imaging spectrometer can be run at a repetition rate of 1 kHz, totally compatible with the fs Ti:Sapphire laser system, facilitating time-resolved studies in gas phase which are usually time-consuming. Time-resolved velocity map imaging study of NH3 photodissociation at 200 nm was performed and the time-resolved total kinetic energy release spectrum of H+NH~ products provides rich information about the dissociation dynamics of NH3. These results show that this new apparatus is a powerful tool for investigating the molecular reaction dynamics using time-resolved methods.
基金Research on the physical structure and visibility of heavy fog in the mountainous region of Nan Ling Mts., a project from the Natural Science Foundation of China (49975001)
文摘Using the composite field observational data collected in the area south of the Nanling Mts. and numerical modeling, the seasonal features of dense fog and visibility, fog drop spectrum and physical concept of fog forming have been analyzed. The occurring frequency of low visibility(≤200 m) is very high with a mean of 24.7%, a maximum of 41.8% from the end of autumn to winter and next spring. The fog processes that occur in the area south of the Nanling Mts. in spring and winter result from the interactions of complicated micro-physical processes, the local terrain, water vapor transportation and the influencing weather system. The fog processes are arisen from advection or windward slope, which is much different from the radiation fog. Cooling condensation due to the air lifted by the local mountain plays an important role in fog formation. Windward slope of the mountain is favorable to the fog formation. Dense fog can occur at lower altitudes in the windward slope of mountain, resulting in the lower visibility. The fog is mainly of small-drop spectrum with smaller number-density than that of urban fog, and its drop spectrum has descending trend in the section of smaller diameter. The inverse relationship between fog water content and visibility is the best among several relationships of micro-variables. In addition to micro-physical processes of fog body itself, the motion of irregular climbing and crossing over hillside while the fog body is being transported by the wind are also important reasons for the fluctuation of micro-physical parameters such as fog water content.
文摘Er3+-doped TeO2-ZnO-Na2O-B2O3-GeO2 (TZNBG) glasses were prepared by melt-quenching method. Differential scanning calorimetry (DSC) and thermal mechanical analysis (TMA) were used to calculate thermal parameters: crystallization temperature (Tx), glass transition temperature (Tg) and thermal expansion (α). Besides, Judd-Ofelt theory is applied to analyzing absorption spectra. Intensity parameters -λ (λ=2, 4, 6), transition probabilities Aed, radiative lifetime τi, and branching ratios β of Er3+ transitions were obtained. Emission cross-section σemis of 4I13/2→4I15/2 transition of Er3+ was calculated according to the theory of McCumber. All of the parameters indicate that the thermal stability and optical properties of Er3+-doped TZNBG glasses are improved effectively.
文摘Traditional ligand-field theory has to be improved by taking into account both 'pure electronic' contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, R1, R2, R'3, R'2, and R'1 lines, U band, ground-state zero-field-splitting (GSZFS), and ground-state g factors of ruby and/or GSGG: Cr3+ as well as thermal shifts of GSZFS, R1 line and R2 line of ruby have been calculated.The results are in very good agreement with the experimental data. Moreover, it is found that the value of cubic-field parameter given by traditional ligand-field theory is inappropriately large. For thermal shifts of GSZFS, R1 line and R2 line of ruby, several conclusions have also been obtained.