This research deals with an investigation of the adsorption of two acids, namely, 5-amino- 2-chlorotoluene-4-sulfonic and chlorhydric acids from their solution onto weakly basic resin. The screening of res-ins, kineti...This research deals with an investigation of the adsorption of two acids, namely, 5-amino- 2-chlorotoluene-4-sulfonic and chlorhydric acids from their solution onto weakly basic resin. The screening of res-ins, kinetics, and isotherm were studied. The results indicate that the D301R is more appropriate for the removal of acids from solution. The adsorption of acids obeys Langmuir isotherm and the first-order kinetics model. Sorptive affinity of the two acids on D301R was found to be in the order of 5-amino-2-chlorotoluene-4-sulfonic acid> chlorhydric acid. Thermodynamic parameters for the adsorption of acids were calculated and discussed. The maxi-mum removal of acids was observed around 97% and 76% at 25℃ for 5-amino-2-chlorotoluene-4-sulfonic acid and chlorhydric acid , respectively.展开更多
基金Supported by the Natural Science Foundation of Jilin Province (No.990337).
文摘This research deals with an investigation of the adsorption of two acids, namely, 5-amino- 2-chlorotoluene-4-sulfonic and chlorhydric acids from their solution onto weakly basic resin. The screening of res-ins, kinetics, and isotherm were studied. The results indicate that the D301R is more appropriate for the removal of acids from solution. The adsorption of acids obeys Langmuir isotherm and the first-order kinetics model. Sorptive affinity of the two acids on D301R was found to be in the order of 5-amino-2-chlorotoluene-4-sulfonic acid> chlorhydric acid. Thermodynamic parameters for the adsorption of acids were calculated and discussed. The maxi-mum removal of acids was observed around 97% and 76% at 25℃ for 5-amino-2-chlorotoluene-4-sulfonic acid and chlorhydric acid , respectively.