The reaction mechanism of the liquid phase ammoniation of adipic acid to adiponitrile was studied experimentally in a semi-batch reactor. Macrokinetics of the main and side reactions were identified to minimize corros...The reaction mechanism of the liquid phase ammoniation of adipic acid to adiponitrile was studied experimentally in a semi-batch reactor. Macrokinetics of the main and side reactions were identified to minimize corrosion and coking to prolong the operation period, to increase the yield of adiponitrile and to improve the design of the reactor. Macrokinetic equations of ammoniation-neutralization of adipic acid and dehydration were of first-order to adipic concentration cB≥3.5% and of second order for cB≥3.5%. Catalyst H3PO4 reduced the activation energy of neutralization and dehydration reactions of adipic acid and was significantly important for the second step of dehydration to produce adiponitrile.展开更多
文摘The reaction mechanism of the liquid phase ammoniation of adipic acid to adiponitrile was studied experimentally in a semi-batch reactor. Macrokinetics of the main and side reactions were identified to minimize corrosion and coking to prolong the operation period, to increase the yield of adiponitrile and to improve the design of the reactor. Macrokinetic equations of ammoniation-neutralization of adipic acid and dehydration were of first-order to adipic concentration cB≥3.5% and of second order for cB≥3.5%. Catalyst H3PO4 reduced the activation energy of neutralization and dehydration reactions of adipic acid and was significantly important for the second step of dehydration to produce adiponitrile.