This study presents the deep removal of copper (Ⅱ) from the simulated cobalt electrolyte using fabricated polystyrene-supported 2-aminomethylpyridine chelating resin (PS-AMP) in a fixed-bed.The effects of bed height ...This study presents the deep removal of copper (Ⅱ) from the simulated cobalt electrolyte using fabricated polystyrene-supported 2-aminomethylpyridine chelating resin (PS-AMP) in a fixed-bed.The effects of bed height (7.0–14.0 cm),feed flow rate (4.5–9.0 mL/min),initial copper (Ⅱ) concentration of the feed (250–1000 mg/L),feed temperature (25–40 ℃) and the value of pH (2.0–4.0) on the adsorption process of the PS-AMP resin were investigated.The experimental data showed that the PS-AMP resin can deeply eliminate copper (Ⅱ) from the simulated cobalt electrolyte.The bed height,feed flow rate,initial copper (Ⅱ) concentration of the feed,feed temperature and feed pH value which corresponded to the highest removal of copper (Ⅱ) were 7.0 cm with 35 mm of the column diameter,4.5 mL/min,40℃,1000 mg/L and 4.0,respectively.The breakthrough capacity,the saturated capacity of the column and the mass ratio of Cu/Co (g/g) in the saturated resin were correspondingly 16.51 mg/g dry resin,61.72 mg/g dry resin and 37.67 under the optimal experimental conditions.The copper (Ⅱ) breakthrough curves were fitted by the empirical models of Thomas,Yoon-Nelson and Adam-Bohart,respectively.The Thomas model was found to be the most suitable one for predicting how the concentration of copper (Ⅱ) in the effluent changes with the adsorption time.展开更多
固体载体对固体自微乳化给药系统(solid self-microemulsifying drug delivery systems,S-SMEDDS)的体内外性质有重要影响。本文探讨微粉硅胶对S-SMEDDS药物吸收的影响,为选择适宜固体载体提供依据。通过研究微粉硅胶对小肠脂解和S-SME...固体载体对固体自微乳化给药系统(solid self-microemulsifying drug delivery systems,S-SMEDDS)的体内外性质有重要影响。本文探讨微粉硅胶对S-SMEDDS药物吸收的影响,为选择适宜固体载体提供依据。通过研究微粉硅胶对小肠脂解和S-SMEDDS体外释放的影响,并采用新型体外脂解-吸收模型研究微粉硅胶对S-SMEDDS离体小肠吸收的影响。结果发现微粉硅胶既能提高脂解速率,增加脂解后水性分散相中药物分配,促进药物吸收;又会延缓S-SMEDDS体外释药,影响药物的吸收速度;最终导致对S-SMEDDS的离体小肠吸收没有显著性影响。而且微粉硅胶对脂解和释药的影响都与其用量有关,这提示微粉硅胶适合作为S-SMEDDS的固体载体,其用量需要进一步筛选优化。展开更多
基金Project(2014CB643401)supported by the National Basic Research Program of ChinaProjects(51134007,51474256)supported by the National Natural Science Foundation of ChinaProject(2017TP1001)supported by the Hunan Provincial Science and Technology Plan Project,China
文摘This study presents the deep removal of copper (Ⅱ) from the simulated cobalt electrolyte using fabricated polystyrene-supported 2-aminomethylpyridine chelating resin (PS-AMP) in a fixed-bed.The effects of bed height (7.0–14.0 cm),feed flow rate (4.5–9.0 mL/min),initial copper (Ⅱ) concentration of the feed (250–1000 mg/L),feed temperature (25–40 ℃) and the value of pH (2.0–4.0) on the adsorption process of the PS-AMP resin were investigated.The experimental data showed that the PS-AMP resin can deeply eliminate copper (Ⅱ) from the simulated cobalt electrolyte.The bed height,feed flow rate,initial copper (Ⅱ) concentration of the feed,feed temperature and feed pH value which corresponded to the highest removal of copper (Ⅱ) were 7.0 cm with 35 mm of the column diameter,4.5 mL/min,40℃,1000 mg/L and 4.0,respectively.The breakthrough capacity,the saturated capacity of the column and the mass ratio of Cu/Co (g/g) in the saturated resin were correspondingly 16.51 mg/g dry resin,61.72 mg/g dry resin and 37.67 under the optimal experimental conditions.The copper (Ⅱ) breakthrough curves were fitted by the empirical models of Thomas,Yoon-Nelson and Adam-Bohart,respectively.The Thomas model was found to be the most suitable one for predicting how the concentration of copper (Ⅱ) in the effluent changes with the adsorption time.
文摘固体载体对固体自微乳化给药系统(solid self-microemulsifying drug delivery systems,S-SMEDDS)的体内外性质有重要影响。本文探讨微粉硅胶对S-SMEDDS药物吸收的影响,为选择适宜固体载体提供依据。通过研究微粉硅胶对小肠脂解和S-SMEDDS体外释放的影响,并采用新型体外脂解-吸收模型研究微粉硅胶对S-SMEDDS离体小肠吸收的影响。结果发现微粉硅胶既能提高脂解速率,增加脂解后水性分散相中药物分配,促进药物吸收;又会延缓S-SMEDDS体外释药,影响药物的吸收速度;最终导致对S-SMEDDS的离体小肠吸收没有显著性影响。而且微粉硅胶对脂解和释药的影响都与其用量有关,这提示微粉硅胶适合作为S-SMEDDS的固体载体,其用量需要进一步筛选优化。