尿石素A具有许多优良的生理活性,但其极低的水溶性和生物利用率限制了尿石素A的应用。为克服上述限制,该文采用pH驱动法结合高压均质技术制备尿石素A脂质体(urolithin A liposomes,UA-LPs),并考察其结构特性、稳定性及体外消化特性。结...尿石素A具有许多优良的生理活性,但其极低的水溶性和生物利用率限制了尿石素A的应用。为克服上述限制,该文采用pH驱动法结合高压均质技术制备尿石素A脂质体(urolithin A liposomes,UA-LPs),并考察其结构特性、稳定性及体外消化特性。结果表明,大豆卵磷脂为20 mg/mL所制得的UA-LPs的平均粒径为(97.46±0.83)nm,多分散系数为(0.27±0.01),Zeta电位为(-40.3±1.06)mV,包埋率为(98.11±0.26)%,负载率为(2.39±0.01)%。UA-LPs在原子力显微镜下为分布均匀的球状结构。热稳定性实验表明,不同大豆卵磷脂浓度的UA-LPs的包埋率均随热处理时间的延长有所下降,20 mg/mL的大豆卵磷脂制备的UA-LPs具有最好的热稳定性,其在80℃处理180 min后仍可保留45%的尿石素A,且粒径、多分散系数变化趋势较小。pH稳定性表明UA-LPs在酸性条件下包埋率较低,随着pH的升高,粒径、多分散系数变化不显著(P>0.05),20 mg/mL的大豆卵磷脂制备的UA-LPs的Zeta电位绝对值上升5.5,稳定性升高。体外模拟消化实验表明,UA-LPs能有效提高尿石素A的转化率以及生物可接受度,其中20 mg/mL大豆卵磷脂制备的UA-LPs的体外转化率相比游离的尿石素A增加了3.26倍,生物可接受度提高2.07倍。因此,利用pH驱动法可以成功制备出UA-LPs,且高大豆卵磷脂浓度的UA-LPs物理稳定性更好,以上研究结果为扩展尿石素A在食品工业及生物医药领域的应用提供依据。展开更多