OBJECTIVE To examine the possibility of human sodium iodide symporter (hNIS) protein expression in lung cancer cells. METHODS Human lung A549 cancer cells were thawed and cultured in vitro. The cells were divided in...OBJECTIVE To examine the possibility of human sodium iodide symporter (hNIS) protein expression in lung cancer cells. METHODS Human lung A549 cancer cells were thawed and cultured in vitro. The cells were divided into an experimental group transfected with a recombinant pcDNA3-hNIS plasmid and a control group transfected only with a pcDNA3 plasmid. The recombinant plasmid vector encoding the hNIS gene (pcDNA3-hNIS) was amplified, purified and identified. The hNIS gene was followed by DNA sequencing. A Western blot and an immunohistochemical assay were applied to detect the hNIS protein expression in the transfected human lung A549 cancer cells. RESULTS Restriction enzyme digestion and DNA sequencing results showed the size and direction of the inserted gene in the recombinant pcD- NA3-hNIS plasmid was correct. The Western blot method and immunohistochemical analysis showed a positive NIS protein expression in the experimental group. The NIS protein was detected mainly in the cell membranes showing a positive rate up to 70.6% with no expression of the NIS protein in the control group. There was a significant difference between two groups (P=0.000). CONCLUSION The hNIS gene was transfected effectively into human lung A549 cancer cells mediated by Lipofectamine 2000, and was expressed with its protein in vitro.展开更多
AIM: To observe the therapeutic effects of liposomeencapsulated adriamycin (LADM) on hepatoma in comparison with adriamycin solution (FADM) and adriarnycin plus blank liposome (ADM + BL) administered into the ...AIM: To observe the therapeutic effects of liposomeencapsulated adriamycin (LADM) on hepatoma in comparison with adriamycin solution (FADM) and adriarnycin plus blank liposome (ADM + BL) administered into the hepatic artery of rats. METHODS: LADM was prepared by pH gradient-driven method. Normal saline, FADM (2 mg/kg), ADM+BL (2 mg/kg), and LADM (2 mg/kg) were injected via the hepatic artery in rats bearing liver W256 carcinosarcoma, which were divided into four groups randomly. The therapeutic effects were evaluated in terms of survival time, tumor enlargement ratio, and tumor necrosis degree. The difference was determined with ANOVA and Dunnett test and log rank test. RESULTS: Compared to FADM or ADM + BL, LADM produced a more significant tumor inhibition (tumor volume ratio: 1.243±0.523 vs 1.883±0.708, 1.847±0.661, P 〈 0.01), and more extensive tumor necrosis. The increased life span was prolonged significantly in rats receiving LADM compared with FADM or ADM+BL (231.48 vs 74.66, 94.70) (P 〈 0.05). CONCLUSION: The anticancer efficacies of adriamycin on hepatoma can be strongly improved by liposomal encapsulation through hepatic arterial administration.展开更多
The three immediate-early proteins of HSV-1, ICP0, ICP22, and ICP27, have specific and pivotal functions in transcriptional activation and inhibition, multiple regulatory and control processes of viral genes. In this ...The three immediate-early proteins of HSV-1, ICP0, ICP22, and ICP27, have specific and pivotal functions in transcriptional activation and inhibition, multiple regulatory and control processes of viral genes. In this paper, the expression and localization of these three proteins were studied in neuroblastoma cells using biochemical assays, and their possible and potential interactive functions are discussed. The data show that the three proteins are localized in different structures, specifically in the PML-NB-associated structure, which is a specific nuclear structure composed of many protein molecules and bound tightly to the nuclear matrix in neuroblastoma cells. The results suggest that the activating and suppressive functions of ICPs are mostly dependent on their transcriptional and regulatory roles, including the PML-NB-associated structure.展开更多
OBJECTIVE To investigate the apoptosis-inducing effect of XIAP antisense oligonucleotides on glioblastoma cells in vitro. METHODS There were 4 groups in our experiment. Group A, as a cell control group, had normal cel...OBJECTIVE To investigate the apoptosis-inducing effect of XIAP antisense oligonucleotides on glioblastoma cells in vitro. METHODS There were 4 groups in our experiment. Group A, as a cell control group, had normal cell culture and no treatment applied. Group B, as a blank control group, had normal cell culture and no liposome control of ASODN. Group C was N-ODN. Group D was the ASODN group. RT-PCR and Western blot assay were conducted to detect the expression of XIAP in all A-172 ceil groups after treatment with XIAP antisense oligonucleotides (ASODN). MTT assay and flow-cytometry (FCM) detection were used to detect the ability of cell anchoring growth and apoptotic rates of all groups. The processing time was 72 h. RESULTS The expression of XIAP in the A-172 cells was greatly down-regulated, after treated with XIAP-ASODN. Among different concentrations of ASODN, the 300nM was the most optimal one. The down-regulation of XIAP obviously inhibited the succinate dehydrogenase (SDH) activity of the A-172 cells and the increased apoptotic rate of A-172 cells (87.45%) was significantly higher than that of the A-172 in the control groups. There was a statistically significant difference between the treatment and control groups (P 〈 0.01). CONCLUSION The XIAP-ASODN can effectively regulate the expression of the XIAP down, as a result, inhibit the growth of the glioblastoma cells (A-172) and obviously increase the apoptotic rate of the A-172 cells. The results killing role of XIAP-ASODN to the of the study manifest an overt glioblastoma cells.展开更多
Surface modification may have important influences on the penetration behavior of nanoscale drug delivery system. In the present study, we mainly focused on whether cell targeting or cell penetration could affect pene...Surface modification may have important influences on the penetration behavior of nanoscale drug delivery system. In the present study, we mainly focused on whether cell targeting or cell penetration could affect penetration abilities of nanostructured lipid carriers(NLC). Real--time penetration of folate--or cell penetrating peptide(CPP)-modified NLC was evaluated using a multicellular tumor spheroid(MTS) established by stacking culture method as an in vitro testing platform. The results suggested that CPP modification had a better penetration behavior both on penetration depth and intensity compared with folate-modified NLC at the early stage of penetration process.展开更多
文摘OBJECTIVE To examine the possibility of human sodium iodide symporter (hNIS) protein expression in lung cancer cells. METHODS Human lung A549 cancer cells were thawed and cultured in vitro. The cells were divided into an experimental group transfected with a recombinant pcDNA3-hNIS plasmid and a control group transfected only with a pcDNA3 plasmid. The recombinant plasmid vector encoding the hNIS gene (pcDNA3-hNIS) was amplified, purified and identified. The hNIS gene was followed by DNA sequencing. A Western blot and an immunohistochemical assay were applied to detect the hNIS protein expression in the transfected human lung A549 cancer cells. RESULTS Restriction enzyme digestion and DNA sequencing results showed the size and direction of the inserted gene in the recombinant pcD- NA3-hNIS plasmid was correct. The Western blot method and immunohistochemical analysis showed a positive NIS protein expression in the experimental group. The NIS protein was detected mainly in the cell membranes showing a positive rate up to 70.6% with no expression of the NIS protein in the control group. There was a significant difference between two groups (P=0.000). CONCLUSION The hNIS gene was transfected effectively into human lung A549 cancer cells mediated by Lipofectamine 2000, and was expressed with its protein in vitro.
文摘AIM: To observe the therapeutic effects of liposomeencapsulated adriamycin (LADM) on hepatoma in comparison with adriamycin solution (FADM) and adriarnycin plus blank liposome (ADM + BL) administered into the hepatic artery of rats. METHODS: LADM was prepared by pH gradient-driven method. Normal saline, FADM (2 mg/kg), ADM+BL (2 mg/kg), and LADM (2 mg/kg) were injected via the hepatic artery in rats bearing liver W256 carcinosarcoma, which were divided into four groups randomly. The therapeutic effects were evaluated in terms of survival time, tumor enlargement ratio, and tumor necrosis degree. The difference was determined with ANOVA and Dunnett test and log rank test. RESULTS: Compared to FADM or ADM + BL, LADM produced a more significant tumor inhibition (tumor volume ratio: 1.243±0.523 vs 1.883±0.708, 1.847±0.661, P 〈 0.01), and more extensive tumor necrosis. The increased life span was prolonged significantly in rats receiving LADM compared with FADM or ADM+BL (231.48 vs 74.66, 94.70) (P 〈 0.05). CONCLUSION: The anticancer efficacies of adriamycin on hepatoma can be strongly improved by liposomal encapsulation through hepatic arterial administration.
文摘The three immediate-early proteins of HSV-1, ICP0, ICP22, and ICP27, have specific and pivotal functions in transcriptional activation and inhibition, multiple regulatory and control processes of viral genes. In this paper, the expression and localization of these three proteins were studied in neuroblastoma cells using biochemical assays, and their possible and potential interactive functions are discussed. The data show that the three proteins are localized in different structures, specifically in the PML-NB-associated structure, which is a specific nuclear structure composed of many protein molecules and bound tightly to the nuclear matrix in neuroblastoma cells. The results suggest that the activating and suppressive functions of ICPs are mostly dependent on their transcriptional and regulatory roles, including the PML-NB-associated structure.
文摘OBJECTIVE To investigate the apoptosis-inducing effect of XIAP antisense oligonucleotides on glioblastoma cells in vitro. METHODS There were 4 groups in our experiment. Group A, as a cell control group, had normal cell culture and no treatment applied. Group B, as a blank control group, had normal cell culture and no liposome control of ASODN. Group C was N-ODN. Group D was the ASODN group. RT-PCR and Western blot assay were conducted to detect the expression of XIAP in all A-172 ceil groups after treatment with XIAP antisense oligonucleotides (ASODN). MTT assay and flow-cytometry (FCM) detection were used to detect the ability of cell anchoring growth and apoptotic rates of all groups. The processing time was 72 h. RESULTS The expression of XIAP in the A-172 cells was greatly down-regulated, after treated with XIAP-ASODN. Among different concentrations of ASODN, the 300nM was the most optimal one. The down-regulation of XIAP obviously inhibited the succinate dehydrogenase (SDH) activity of the A-172 cells and the increased apoptotic rate of A-172 cells (87.45%) was significantly higher than that of the A-172 in the control groups. There was a statistically significant difference between the treatment and control groups (P 〈 0.01). CONCLUSION The XIAP-ASODN can effectively regulate the expression of the XIAP down, as a result, inhibit the growth of the glioblastoma cells (A-172) and obviously increase the apoptotic rate of the A-172 cells. The results killing role of XIAP-ASODN to the of the study manifest an overt glioblastoma cells.
基金National key Basic Research Program(Grant No.2013CB932501)National Natural Science Foundation of China(Grant No.81273454 and 81473156)+1 种基金Beijing National Science Foundation(Grant No.7132113)Doctoral Foundation of the Ministry of Education(Grant No.20130001110055)
文摘Surface modification may have important influences on the penetration behavior of nanoscale drug delivery system. In the present study, we mainly focused on whether cell targeting or cell penetration could affect penetration abilities of nanostructured lipid carriers(NLC). Real--time penetration of folate--or cell penetrating peptide(CPP)-modified NLC was evaluated using a multicellular tumor spheroid(MTS) established by stacking culture method as an in vitro testing platform. The results suggested that CPP modification had a better penetration behavior both on penetration depth and intensity compared with folate-modified NLC at the early stage of penetration process.