AIM: To characterise the effect of energy restriction (ER) on liver lipid and primary metabolite profile by using metabolomic approach. We also investigated whether the effect of energy restriction can be further e...AIM: To characterise the effect of energy restriction (ER) on liver lipid and primary metabolite profile by using metabolomic approach. We also investigated whether the effect of energy restriction can be further enhanced by modification of dietary protein source and calcium. METHODS: Liver metabolomic profile of lean and obese C57BI/6J mice (n = 10/group) were compared with two groups of weight-reduced mice. ER was performed on control diet and whey protein-based high-calcium diet (whey + Ca). The metabolomic analyses were performed using the UPLC/MS based lipidomic platform and the HPLC/MS/MS based primary metabolite platform.RESULTS: ER on both diets significantly reduced hepatic lipid accumulation and lipid droplet size, while only whey + Ca diet significantly decreased blood glucose (P 〈 0.001) and serum insulin (P 〈 0.01). In hepatic lipid species the biggest reduction was in the level of triacylglycerols and cerarnides while the level of cholesterol esters was significantly increased during ER. Interestingly, diacylglycerol to phospholipid ratio, an indicator of relative amount of diabetogenic diglyceride species, was increased in the control ER group, but decreased in the whey + Ca ER group (P 〈 0.001, vs obese). ER on whey + Ca diet also totally reversed the obesity induced increase in the relative level of lipotoxic cerarnides (P 〈 0.001, vs obese; P 〉 0.05, vs lean). These changes were accompanied with up-regulated TCA cycle and pentose phosphate pathway rnetabolites. CONCLUSION: ER-induced changes on hepatic rnetabolornic profile can be significantly affected by dietary protein source. The therapeutic potential of whey protein and calcium should be further studied.展开更多
An 8-week feeding trial was conducted to determine the optimal dietary protein-to-lipid ratio for juvenile Nibea albiflora with an initial weight of(11.76 ± 0.20) g.Nine experimental diets containing different co...An 8-week feeding trial was conducted to determine the optimal dietary protein-to-lipid ratio for juvenile Nibea albiflora with an initial weight of(11.76 ± 0.20) g.Nine experimental diets containing different concentrations of protein(40%,47%,or 54%) and lipids(5%,9%,or 13%) in a 3 × 3 factorial experimental design were tested in triplicate groups of fish,while the protein-to-energy(P/E) ratios of the diets varied in the range of 19.74–28.32 mg k J^(-1).Results showed that fish fed diets containing 9% or 13% lipids with 54% protein exhibited significantly higher weight gains and specific growth rates than those fed other diets.The feed conversion rate of fish fed the diet with 40% protein and 5% lipids was significantly poorer than that of fish fed other diets.The protein efficiency rate of fish fed diets with 5% lipids was significantly lower than that of fish fed 9% or 13% lipid diets.Carcass lipid and energy contents were positively correlated with dietary lipid level regardless of protein level.Fish fed a 54% protein diet showed the highest trypsin activity.The intestinal lipase activity of fish fed the diet containing 13% lipids was significantly higher than that of fish fed 5% or 9% lipid diets.These results demonstrate the high protein dietary requirements of N.albiflora.A diet containing 54% protein and 9%–13% lipids with a P/E ratio of 26.2–27.81 mg protein k J^(-1) can be considered optimal for juvenile N.albiflora.展开更多
Extruded soybean meal (ESBM) was evaluated as a protein source for partial replacement of fish meal (FM) in diets of juvenile Litopenaeus vannarnei. In the control diet (Diet 1), FM protein was replaced with inc...Extruded soybean meal (ESBM) was evaluated as a protein source for partial replacement of fish meal (FM) in diets of juvenile Litopenaeus vannarnei. In the control diet (Diet 1), FM protein was replaced with increasing dietary levels of ESBM (4.28%, 8.40%, 12.62%, 16.82%, and 25.26%) at 10%, 20%, 30%, 40%, and 60% levels (Diets 2 to 6, respectively). An eight-week feeding trial was conducted on 720 juvenile shrimp (0.67 g ± 0.01 g mean initial Weight), and nutrient digestibility of the six diets was determined. ESBM could replace 20% of FM without causing a significant reduction in growth of shrimp, but other dietary treatments strongly affected whole body composition. Crude protein content of the whole body fed Diet 6 was significantly lower than that fed Diet 2 (P〈0.05), while crude lipid content of the whole body fed Diet 5 or 6 was significantly higher than that fed Diet 2 (P〈0,05). Protein digestibilities of Diets 5 and 6 were significantly lower than that of Diet 1 (P〈0.05). Digestibility of lipids ranged from 96.97% in Diet 6 to 98.34% in Diet 3, whereas dry matter digestibility decreased with increasing replacement level. This study indicates that 20% FM replacement with ESBM in the basic diet containing 40% protein and 30% FM is optimal for juvenile L. vannamei.展开更多
基金Foundation for Nutrition Research, Academy of Finland, Sigrid Juselius Foundation and Valio Ltd., Helsinki, Finland
文摘AIM: To characterise the effect of energy restriction (ER) on liver lipid and primary metabolite profile by using metabolomic approach. We also investigated whether the effect of energy restriction can be further enhanced by modification of dietary protein source and calcium. METHODS: Liver metabolomic profile of lean and obese C57BI/6J mice (n = 10/group) were compared with two groups of weight-reduced mice. ER was performed on control diet and whey protein-based high-calcium diet (whey + Ca). The metabolomic analyses were performed using the UPLC/MS based lipidomic platform and the HPLC/MS/MS based primary metabolite platform.RESULTS: ER on both diets significantly reduced hepatic lipid accumulation and lipid droplet size, while only whey + Ca diet significantly decreased blood glucose (P 〈 0.001) and serum insulin (P 〈 0.01). In hepatic lipid species the biggest reduction was in the level of triacylglycerols and cerarnides while the level of cholesterol esters was significantly increased during ER. Interestingly, diacylglycerol to phospholipid ratio, an indicator of relative amount of diabetogenic diglyceride species, was increased in the control ER group, but decreased in the whey + Ca ER group (P 〈 0.001, vs obese). ER on whey + Ca diet also totally reversed the obesity induced increase in the relative level of lipotoxic cerarnides (P 〈 0.001, vs obese; P 〉 0.05, vs lean). These changes were accompanied with up-regulated TCA cycle and pentose phosphate pathway rnetabolites. CONCLUSION: ER-induced changes on hepatic rnetabolornic profile can be significantly affected by dietary protein source. The therapeutic potential of whey protein and calcium should be further studied.
基金supported by grants from the Na-tional Natural Science Foundation of China(No.41476127)the Science and Technology Planning Project of Zhejiang Province(No.2016F50038)+1 种基金the Science and Technology Planning Project of ZhouShan City(No.2015C31010)the Scientific Research Foundation of Zhejiang Ocean Universtiy(No.2014Q1434)
文摘An 8-week feeding trial was conducted to determine the optimal dietary protein-to-lipid ratio for juvenile Nibea albiflora with an initial weight of(11.76 ± 0.20) g.Nine experimental diets containing different concentrations of protein(40%,47%,or 54%) and lipids(5%,9%,or 13%) in a 3 × 3 factorial experimental design were tested in triplicate groups of fish,while the protein-to-energy(P/E) ratios of the diets varied in the range of 19.74–28.32 mg k J^(-1).Results showed that fish fed diets containing 9% or 13% lipids with 54% protein exhibited significantly higher weight gains and specific growth rates than those fed other diets.The feed conversion rate of fish fed the diet with 40% protein and 5% lipids was significantly poorer than that of fish fed other diets.The protein efficiency rate of fish fed diets with 5% lipids was significantly lower than that of fish fed 9% or 13% lipid diets.Carcass lipid and energy contents were positively correlated with dietary lipid level regardless of protein level.Fish fed a 54% protein diet showed the highest trypsin activity.The intestinal lipase activity of fish fed the diet containing 13% lipids was significantly higher than that of fish fed 5% or 9% lipid diets.These results demonstrate the high protein dietary requirements of N.albiflora.A diet containing 54% protein and 9%–13% lipids with a P/E ratio of 26.2–27.81 mg protein k J^(-1) can be considered optimal for juvenile N.albiflora.
基金financially supported by the Special Fund for Agro-scientific Research in the Public Interest of China(201003020)the Guangdong University Innovation Talents Cultivating Project of China(1009324)+1 种基金the Guangdong Natural Science Foundation of China(S2012 040007863)by the Guangdong Province Universities and College Pearl River Scholar Funded Scheme(GD UPS-2011)
文摘Extruded soybean meal (ESBM) was evaluated as a protein source for partial replacement of fish meal (FM) in diets of juvenile Litopenaeus vannarnei. In the control diet (Diet 1), FM protein was replaced with increasing dietary levels of ESBM (4.28%, 8.40%, 12.62%, 16.82%, and 25.26%) at 10%, 20%, 30%, 40%, and 60% levels (Diets 2 to 6, respectively). An eight-week feeding trial was conducted on 720 juvenile shrimp (0.67 g ± 0.01 g mean initial Weight), and nutrient digestibility of the six diets was determined. ESBM could replace 20% of FM without causing a significant reduction in growth of shrimp, but other dietary treatments strongly affected whole body composition. Crude protein content of the whole body fed Diet 6 was significantly lower than that fed Diet 2 (P〈0.05), while crude lipid content of the whole body fed Diet 5 or 6 was significantly higher than that fed Diet 2 (P〈0,05). Protein digestibilities of Diets 5 and 6 were significantly lower than that of Diet 1 (P〈0.05). Digestibility of lipids ranged from 96.97% in Diet 6 to 98.34% in Diet 3, whereas dry matter digestibility decreased with increasing replacement level. This study indicates that 20% FM replacement with ESBM in the basic diet containing 40% protein and 30% FM is optimal for juvenile L. vannamei.