Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanis...Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanism were analyzed.The microstructure and composition were analyzed by scanning electron microscope(SEM)and energy dispersive spectroscope(EDS).X-ray diffractometer(XRD),transmission electron microscope(TEM)and selective area electron diffraction(SAED)were used to analyze the phase composition.The distribution of microhardness was identified as gradual transition and tensile strength had a tendency to decrease first and then increase.The distribution of nano-sizedη(MgZn2)particles in theα(Al)matrix and Al2MgCu phase determined the tensile performances along the thickness direction and led to the formation of ductile/brittle composite fracture in the HAZ.The continuous distribution of Al2MgCu phase in the strip intergranular precipitates gave birth to premature cracks and the brittle fracture region.The precipitated particles coarsening also led to the deterioration of mechanical properties.展开更多
In the present investigation, a thermal welding simulation technique was used to investigate the mechanical properties and microstructure features of the coarse-grained heat-affected zone (CGHAZ) of ASTM4130 steel. Th...In the present investigation, a thermal welding simulation technique was used to investigate the mechanical properties and microstructure features of the coarse-grained heat-affected zone (CGHAZ) of ASTM4130 steel. The effect of post welding heat treatment (PWHT) and welding heat inputs on the toughness of CGHAZ was also analyzed. The results show that CGHAZ has the lowest toughness, which is only 5.5%-7.1% of the base metal. CGHAZ is mainly composed of dislocation martensite, up-per and lower bainite, and M-A constituents. But after PWHT, carbides precipitate from non-equilibrium microstructures of CGHAZ accompanying some retained austenite which transforms into low bainite, thereby enhancing toughness over the base metal. Therefore, the key microstructure factors affecting fracture toughness are lathlike non-equilibrium microstructure and lowered supersaturation before and after PWHT respectively. When welding heat input is between 12 kJ/cm and 28 kJ/cm, the mechanical properties in CGHAZ of ASTM4130 with single-pass welding can satisfy the requirements when PWHT is applied.展开更多
Thermally activated dislocation emission in high-temperature ferroelectric ceramics is investigated through an assumption of thermal stability and a novel analytical method. The stress intensity factor (SIF) arising f...Thermally activated dislocation emission in high-temperature ferroelectric ceramics is investigated through an assumption of thermal stability and a novel analytical method. The stress intensity factor (SIF) arising from domain switching is evaluated by using a Green's function method, and the critical applied electric field intensity factor (CAEFIF) for brittle fracture at room temperature is obtained. Besides, the lowest temperature for single dislocation emission before brittle fracture is also obtained by constructing an energy balance. The multi-scale analysis of facture toughness of the ferroelectric ceramics at high temperature is carried out. Through the analysis, the CAEFIF for crack extension is recalculated. The results show that the competition and interaction effects between dislocation emission and brittle fracture are very obvious. Besides, the higher critical activation temperature, the more columns of obstacles will be overcome. Additionally, the shielding effect arising from thermally activated dislocations is remarkable, thus, the brittle-ductile transition can promote the fracture toughness of high-temperature ferroelectric ceramics.展开更多
基金Project(51905126) supported by the National Natural Science Foundation of ChinaProject(2018M641822) supported by the China Postdoctoral Science Foundation-General ProgramProject(HIT.NSRIF.201703) supported by the Natural Scientific Research Innovation Foundation in HIT,China
文摘Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanism were analyzed.The microstructure and composition were analyzed by scanning electron microscope(SEM)and energy dispersive spectroscope(EDS).X-ray diffractometer(XRD),transmission electron microscope(TEM)and selective area electron diffraction(SAED)were used to analyze the phase composition.The distribution of microhardness was identified as gradual transition and tensile strength had a tendency to decrease first and then increase.The distribution of nano-sizedη(MgZn2)particles in theα(Al)matrix and Al2MgCu phase determined the tensile performances along the thickness direction and led to the formation of ductile/brittle composite fracture in the HAZ.The continuous distribution of Al2MgCu phase in the strip intergranular precipitates gave birth to premature cracks and the brittle fracture region.The precipitated particles coarsening also led to the deterioration of mechanical properties.
文摘In the present investigation, a thermal welding simulation technique was used to investigate the mechanical properties and microstructure features of the coarse-grained heat-affected zone (CGHAZ) of ASTM4130 steel. The effect of post welding heat treatment (PWHT) and welding heat inputs on the toughness of CGHAZ was also analyzed. The results show that CGHAZ has the lowest toughness, which is only 5.5%-7.1% of the base metal. CGHAZ is mainly composed of dislocation martensite, up-per and lower bainite, and M-A constituents. But after PWHT, carbides precipitate from non-equilibrium microstructures of CGHAZ accompanying some retained austenite which transforms into low bainite, thereby enhancing toughness over the base metal. Therefore, the key microstructure factors affecting fracture toughness are lathlike non-equilibrium microstructure and lowered supersaturation before and after PWHT respectively. When welding heat input is between 12 kJ/cm and 28 kJ/cm, the mechanical properties in CGHAZ of ASTM4130 with single-pass welding can satisfy the requirements when PWHT is applied.
基金Supported by the Ph.D. Programs Foundation of Ministry of Education of China under Grant No. 20123305120008, the Scientific Research Project of Department of Education of Zhejiang Province under Grant No. Y201223508, a Grant from the Impact and Safety of Coastal Engineering Initiative, a COE Program of Zhejiang Provincial Government at Ningbo University under Grant Nos. zj1117, zj1203, and zj1201 and the K.C. Wong Magana Fund
文摘Thermally activated dislocation emission in high-temperature ferroelectric ceramics is investigated through an assumption of thermal stability and a novel analytical method. The stress intensity factor (SIF) arising from domain switching is evaluated by using a Green's function method, and the critical applied electric field intensity factor (CAEFIF) for brittle fracture at room temperature is obtained. Besides, the lowest temperature for single dislocation emission before brittle fracture is also obtained by constructing an energy balance. The multi-scale analysis of facture toughness of the ferroelectric ceramics at high temperature is carried out. Through the analysis, the CAEFIF for crack extension is recalculated. The results show that the competition and interaction effects between dislocation emission and brittle fracture are very obvious. Besides, the higher critical activation temperature, the more columns of obstacles will be overcome. Additionally, the shielding effect arising from thermally activated dislocations is remarkable, thus, the brittle-ductile transition can promote the fracture toughness of high-temperature ferroelectric ceramics.