The understanding of the rock deformation and failure process and the development of appropriate constitutive models are the basis for solving problems in rock engineering. In order to investigate progressive failure ...The understanding of the rock deformation and failure process and the development of appropriate constitutive models are the basis for solving problems in rock engineering. In order to investigate progressive failure behavior in brittle rocks, a modified constitutive model was developed which follows the principles of the continuum damage mechanics method. It incorporates non-linear Hoek-Brown failure criterion, confining pressure-dependent strength degradation and volume dilation laws, and is able to represent the nonlinear degradation and dilation behaviors of brittle rocks in the post-failure region. A series of triaxial compression tests were carried out on Eibenstock(Germany) granite samples. Based on a lab data fitting procedure, a consistent parameter set for the modified constitutive model was deduced and implemented into the numerical code FLAC3 D. The good agreement between numerical and laboratory results indicates that the modified constitutive law is well suited to represent the nonlinear mechanical behavior of brittle rock especially in the post-failure region.展开更多
基金Project(2015M570678)supported by China Postdoctoral Science Foundation funded project
文摘The understanding of the rock deformation and failure process and the development of appropriate constitutive models are the basis for solving problems in rock engineering. In order to investigate progressive failure behavior in brittle rocks, a modified constitutive model was developed which follows the principles of the continuum damage mechanics method. It incorporates non-linear Hoek-Brown failure criterion, confining pressure-dependent strength degradation and volume dilation laws, and is able to represent the nonlinear degradation and dilation behaviors of brittle rocks in the post-failure region. A series of triaxial compression tests were carried out on Eibenstock(Germany) granite samples. Based on a lab data fitting procedure, a consistent parameter set for the modified constitutive model was deduced and implemented into the numerical code FLAC3 D. The good agreement between numerical and laboratory results indicates that the modified constitutive law is well suited to represent the nonlinear mechanical behavior of brittle rock especially in the post-failure region.