Objective To explore the regulatory effect of fragile X mental retardation protein (FMRP) on the translation of microtubule associated protein 1B (MAP1B). Methods The expressions of MAP1B protein and MAP1B mRNA in...Objective To explore the regulatory effect of fragile X mental retardation protein (FMRP) on the translation of microtubule associated protein 1B (MAP1B). Methods The expressions of MAP1B protein and MAP1B mRNA in the brains of 1-week and 6-week old fragile X mental retardation-1 (FmrI) knockout (KO) mice were investigated by immunohistochemistry, Western blot, and in situ hybridization, with the age-matched wild type mice (WT) as controls. Results The mean optical density (MOD) of MAP1B was significantly decreased in each brain region in KO6W compared with WT6W, whereas in KO1W, this decrease was only found in the hippocampus and cerebellum. MAP1B in 6-week mice was much less than that in 1-week mice of the same genotype. The results of Western blot and in situ hybridization showed that MAP1B protein and MAP1B mRNA were significantly decreased in the hippocampus of both KO1W and KO6W. Conclusion The decreased MAP1B protein and MAP1B mRNA in the Fmrl knockout mice indicate that FMRP may positively regulate the expression of MAP1B.展开更多
European air transport network(EATN)and Chinese air transport network(CATN),as two important air transport systems in the world,are facing increasingly spatial hazards,such as extreme weathers and natural disasters. I...European air transport network(EATN)and Chinese air transport network(CATN),as two important air transport systems in the world,are facing increasingly spatial hazards,such as extreme weathers and natural disasters. In order to reflect and compare impact of spatial hazards on the two networks in a practical way,a new spatial vulnerability model(SVM)is proposed in this paper,which analyzes vulnerability of a network system under spatial hazards from the perspectives of network topology and characteristics of hazards. Before introduction of the SVM,two abstract networks for EATN and CATN are established with a simple topological analysis by traditional vulnerability method. Then,the process to study vulnerability of an air transport network under spatial hazards by SVM is presented. Based on it,a comparative case study on EATN and CATN under two representative spatial hazard scenarios,one with an even spatial distribution,named as spatially uniform hazard,and the other with an uneven spatial distribution that takes rainstorm hazard as an example,is conducted. The simulation results show that both of EATN and CATN are robust to spatially uniform hazard,but vulnerable to rainstorm hazard. In the comparison of the results of the two networks that only stands from the points of network topology and characteristics of hazard without considering certain unequal factors,including airspace openness and flight safety importance in Europe and China,EATN is more vulnerable than CATN under rainstorm hazard. This suggests that when the two networks grow to a similar developed level in future,EATN needs to pay more attention to the impact of rainstorm hazard.展开更多
Metallic glasses(MGs)constitute an emerging class of advanced structural materials due to their excellent mechanical properties.However,brittle failure at room temperature and the resultant complicated fracture behavi...Metallic glasses(MGs)constitute an emerging class of advanced structural materials due to their excellent mechanical properties.However,brittle failure at room temperature and the resultant complicated fracture behavior greatly limit their wide engineering applications.Over the past decades,the deformation and fracture in ductile or brittle mode referring to material compositions,load conditions,sample size,etc.,have been widely studied,and significant progress has been made in understanding the failure behavior of MGs.Micromechanisms of fracture have been revealed involving shear banding,cavitation and the nature of the crack tip field.The ductile-to-brittle transition and inherent governing parameters have been found.To well describe and predict the failure behavior of MGs,failure criteria for ductile and brittle MGs have been established empirically or based on atomic interactions.In this paper,we provide a detailed review of the above advances and identify outstanding issues in the failure of MGs that need to be further clarified.展开更多
文摘Objective To explore the regulatory effect of fragile X mental retardation protein (FMRP) on the translation of microtubule associated protein 1B (MAP1B). Methods The expressions of MAP1B protein and MAP1B mRNA in the brains of 1-week and 6-week old fragile X mental retardation-1 (FmrI) knockout (KO) mice were investigated by immunohistochemistry, Western blot, and in situ hybridization, with the age-matched wild type mice (WT) as controls. Results The mean optical density (MOD) of MAP1B was significantly decreased in each brain region in KO6W compared with WT6W, whereas in KO1W, this decrease was only found in the hippocampus and cerebellum. MAP1B in 6-week mice was much less than that in 1-week mice of the same genotype. The results of Western blot and in situ hybridization showed that MAP1B protein and MAP1B mRNA were significantly decreased in the hippocampus of both KO1W and KO6W. Conclusion The decreased MAP1B protein and MAP1B mRNA in the Fmrl knockout mice indicate that FMRP may positively regulate the expression of MAP1B.
基金This work was supported in part by the National Key Research and Development Program of China(No.2018YFC0823706-02)the Fundamental Research Funds for the Central Universities of China(No.3122019057).
文摘European air transport network(EATN)and Chinese air transport network(CATN),as two important air transport systems in the world,are facing increasingly spatial hazards,such as extreme weathers and natural disasters. In order to reflect and compare impact of spatial hazards on the two networks in a practical way,a new spatial vulnerability model(SVM)is proposed in this paper,which analyzes vulnerability of a network system under spatial hazards from the perspectives of network topology and characteristics of hazards. Before introduction of the SVM,two abstract networks for EATN and CATN are established with a simple topological analysis by traditional vulnerability method. Then,the process to study vulnerability of an air transport network under spatial hazards by SVM is presented. Based on it,a comparative case study on EATN and CATN under two representative spatial hazard scenarios,one with an even spatial distribution,named as spatially uniform hazard,and the other with an uneven spatial distribution that takes rainstorm hazard as an example,is conducted. The simulation results show that both of EATN and CATN are robust to spatially uniform hazard,but vulnerable to rainstorm hazard. In the comparison of the results of the two networks that only stands from the points of network topology and characteristics of hazard without considering certain unequal factors,including airspace openness and flight safety importance in Europe and China,EATN is more vulnerable than CATN under rainstorm hazard. This suggests that when the two networks grow to a similar developed level in future,EATN needs to pay more attention to the impact of rainstorm hazard.
基金supported by the National Natural Science Foundation Basic Science Center Program for"Multiscale Problems in Nonlinear Mechanics"(Grant No.11988102)the National Natural Science Foundation of China(Grant Nos.11972346 and 11790292)+3 种基金the National Key Research and Development Program of China(Grant No.2017YFB0702003)the Strategic Priority Research Program(Grant Nos.XDB22040302 and XDB22040303)the Key Research Program of Frontier Sciences(Grant No.QYZDJSSW-JSC011)the Science Challenge Project(Grant No.TZ2018001).
文摘Metallic glasses(MGs)constitute an emerging class of advanced structural materials due to their excellent mechanical properties.However,brittle failure at room temperature and the resultant complicated fracture behavior greatly limit their wide engineering applications.Over the past decades,the deformation and fracture in ductile or brittle mode referring to material compositions,load conditions,sample size,etc.,have been widely studied,and significant progress has been made in understanding the failure behavior of MGs.Micromechanisms of fracture have been revealed involving shear banding,cavitation and the nature of the crack tip field.The ductile-to-brittle transition and inherent governing parameters have been found.To well describe and predict the failure behavior of MGs,failure criteria for ductile and brittle MGs have been established empirically or based on atomic interactions.In this paper,we provide a detailed review of the above advances and identify outstanding issues in the failure of MGs that need to be further clarified.