Electrostatic energy^-storage capacitors,with their ultrahigh storage density and high temperature stability,have been receiving increasing attention of late for their ability to meet the critical requirements of puls...Electrostatic energy^-storage capacitors,with their ultrahigh storage density and high temperature stability,have been receiving increasing attention of late for their ability to meet the critical requirements of pulsed power devices in low^-consumption systems.In such a context,this work reports on the successful production of anti^-ferroelectric(AFE)thin films with excellent energy storage performance under a relatively low electric field.In particular,La^-doped Pb Zr O3 thin films were fabricated using a sol^-gel method,yielding a recoverable energy storage density of 34.87 J cm^-3 with an efficiency of 59.23%at room temperature under the electric field of^800 k V cm^-1.The temperature dependence of the energy storage property was demonstrated from room temperature to 210°C,indicating a stable density variation between 34.87 and 27.98 J cm^-3.The films also exhibited excellent anti^-fatigue property(endurance of up to 3×10^9cycles and the recoverable energy storage density varied from 39.78 to 29.32 J cm^-3 combined with an efficiency of 61.03%–44.95%under the test frequencies from 10 to 5000 Hz).All results were obtained using compact films with a high polarization(Pmax)of approximately 103.7μC cm^-2 and low remnant polarization(Pr^7μC cm^-2),which was owing to the combination of La Ni O3 buffer layers and vacancies at Pb sites.These results illustrate the great potential of pulsed power devices in low^-consumption systems operating in a wide range of temperatures and long^-term operations.展开更多
基金supported by the National Key R&D Program of China(2018YFE0115500)the National Natural Science Foundation of China(61704159 and 51975541)+3 种基金Shanxi Province Science Foundation for Youths(201701D221125 and 201801D221199)Program for the Young Academic Leaders of the North University of China(QX201807)the Research Project Supported By Shanxi Scholarship Council of China(2019-066)Shanxi“1331 Project”Key Subject Construction(1331 KSC)。
文摘Electrostatic energy^-storage capacitors,with their ultrahigh storage density and high temperature stability,have been receiving increasing attention of late for their ability to meet the critical requirements of pulsed power devices in low^-consumption systems.In such a context,this work reports on the successful production of anti^-ferroelectric(AFE)thin films with excellent energy storage performance under a relatively low electric field.In particular,La^-doped Pb Zr O3 thin films were fabricated using a sol^-gel method,yielding a recoverable energy storage density of 34.87 J cm^-3 with an efficiency of 59.23%at room temperature under the electric field of^800 k V cm^-1.The temperature dependence of the energy storage property was demonstrated from room temperature to 210°C,indicating a stable density variation between 34.87 and 27.98 J cm^-3.The films also exhibited excellent anti^-fatigue property(endurance of up to 3×10^9cycles and the recoverable energy storage density varied from 39.78 to 29.32 J cm^-3 combined with an efficiency of 61.03%–44.95%under the test frequencies from 10 to 5000 Hz).All results were obtained using compact films with a high polarization(Pmax)of approximately 103.7μC cm^-2 and low remnant polarization(Pr^7μC cm^-2),which was owing to the combination of La Ni O3 buffer layers and vacancies at Pb sites.These results illustrate the great potential of pulsed power devices in low^-consumption systems operating in a wide range of temperatures and long^-term operations.