低频通信中脉冲型噪声会严重降低通信性能.针对脉冲型噪声的抑制问题,本文提出高斯拖尾零记忆非线性(Gaussian-tailed Zero Memory Nonlinearity,GZMNL)函数的最优化设计方法.GZMNL函数含有两个参数,分别控制其线性范围和拖尾程度,故适...低频通信中脉冲型噪声会严重降低通信性能.针对脉冲型噪声的抑制问题,本文提出高斯拖尾零记忆非线性(Gaussian-tailed Zero Memory Nonlinearity,GZMNL)函数的最优化设计方法.GZMNL函数含有两个参数,分别控制其线性范围和拖尾程度,故适用于多种噪声分布.本文提出GZMNL设计以效能最大化为优化目标,采用自适应搜索算法来寻找GZMNL参数的最佳值.然后讨论了GZMNL在SαS(Symmetricα-Stable,SαS)噪声分布下的快速设计方法,以及在未知噪声分布时的稳健设计方法.最后,仿真SαS噪声和实测大气噪声数据的处理结果表明:本文设计方法在检测性能上能够接近最优非线性,且能够有效抑制未知分布的噪声.展开更多
文摘低频通信中脉冲型噪声会严重降低通信性能.针对脉冲型噪声的抑制问题,本文提出高斯拖尾零记忆非线性(Gaussian-tailed Zero Memory Nonlinearity,GZMNL)函数的最优化设计方法.GZMNL函数含有两个参数,分别控制其线性范围和拖尾程度,故适用于多种噪声分布.本文提出GZMNL设计以效能最大化为优化目标,采用自适应搜索算法来寻找GZMNL参数的最佳值.然后讨论了GZMNL在SαS(Symmetricα-Stable,SαS)噪声分布下的快速设计方法,以及在未知噪声分布时的稳健设计方法.最后,仿真SαS噪声和实测大气噪声数据的处理结果表明:本文设计方法在检测性能上能够接近最优非线性,且能够有效抑制未知分布的噪声.