-
题名一类脉冲微分包含系统的稳定性分析
- 1
-
-
作者
孙振东
-
机构
中国科学院数学与系统科学研究院系统控制重点实验室
-
出处
《系统科学与数学》
CSCD
北大核心
2014年第11期1360-1365,共6页
-
基金
国家重点基础研究计划(973计划2014CB845302)
国家自然科学基金(61273121)资助课题
-
文摘
脉冲微分包含系统是具有状态脉冲的微分包含系统,在建模层面有广泛的模型表征能力.针对一类具有差分包含脉冲形式的线性脉冲微分包含系统,文章探索系统在所有脉冲下的强稳定性,给出基于Lyapunov方法的稳定性判据.特别地,稳定性等价于存在一个联合公共范数,使其对离散子动态诱导出具有压缩性质的公共矩阵范数,及对连续子动态诱导出负值公共测度.该判据可视为连续时间微分包含系统和离散时间差分包含系统相关稳定性判据的完全推广.
-
关键词
脉冲微分包含系统
稳定性
联合公共范数
最大发散速率
-
Keywords
Impulsive differential inclusions, guaranteed stability, joint vector norm,largest divergence rate.
-
分类号
O175.21
[理学—基础数学]
-