The maximum frequency of gravitational waves(GWs) detectable with traditional pulsar timing methods is set by the Nyquist frequency( fNy) of the observation. Beyond this frequency, GWs leave no temporal-correlated sig...The maximum frequency of gravitational waves(GWs) detectable with traditional pulsar timing methods is set by the Nyquist frequency( fNy) of the observation. Beyond this frequency, GWs leave no temporal-correlated signals; instead, they appear as white noise in the timing residuals. The variance of the GW-induced white noise is a function of the position of the pulsars relative to the GW source. By observing this unique functional form in the timing data, we propose that we can detect GWs of frequency >f_(Ny)(super-Nyquist frequency GWs; SNFGWs). We demonstrate the feasibility of the proposed method with simulated timing data.Using a selected dataset from the Parkes Pulsar Timing Array data release 1 and the North American Nanohertz Observatory for Gravitational Waves publicly available datasets, we try to detect the signals from single SNFGW sources. The result is consistent with no GW detection with 65.5% probability. An all-sky map of the sensitivity of the selected pulsar timing array to single SNFGW sources is generated, and the position of the GW source where the selected pulsar timing array is most sensitive to is λ_s =.0.82,β_s =-1.03(rad); the corresponding minimum GW strain is h = 6.31 × 10^(-11) at f = 1 × 10^(-5) Hz.展开更多
文摘通过对比NICER(Neutron Star Interior Composition Explorer)和XPNAV-1(X-ray Pulsar Navigation-1)关于Crab脉冲星同一时段(108天)观测数据的计时处理结果,发现在周期跃变发生前的时段(95天),NICER数据的拟合前计时残差的RMS(root mean square)为5.77μs,远优于XPNAV-1数据的拟合前计时残差的RMS 51.56μs,体现了NICER在有效面积、探测效率、数据采集等方面的优势,给未来我国的X射线脉冲星探测器研制提供了发展方向;而在周期跃变发生后的时段(13天),发现XPNAV-1数据的拟合前计时残差的RMS为55.87μs,而NICER数据的拟合前计时残差的RMS为167.27μs,周期跃变对NICER的影响更大,说明在处理周期跃变发生后时段的NICER数据时,由于NICER的观测精度非常高,需要更频繁地更新Crab星历。最后分别得到了两个探测器整段数据的计时残差。XPNAV-1数据的拟合前计时残差的RMS为55.94μs,而NICER数据的拟合前计时残差的RMS为64.34μs,这说明NICER数据受周期跃变影响更为明显,进一步证明了上述结论。
基金supported by the National Basic Research Program of China(Grant Nos.2014CB845802 and 2012CB821801)the National Natural Science Foundation of China(Grant Nos.11103019,11133002,11103022 and11373036)+1 种基金the Qianren Start-up Grant(Grant No.292012312D1117210)the Strategic Priority Research Program “The Emergence of Cosmological Structures”(Grant No.XDB09000000) of the Chinese Academy of Sciences
文摘The maximum frequency of gravitational waves(GWs) detectable with traditional pulsar timing methods is set by the Nyquist frequency( fNy) of the observation. Beyond this frequency, GWs leave no temporal-correlated signals; instead, they appear as white noise in the timing residuals. The variance of the GW-induced white noise is a function of the position of the pulsars relative to the GW source. By observing this unique functional form in the timing data, we propose that we can detect GWs of frequency >f_(Ny)(super-Nyquist frequency GWs; SNFGWs). We demonstrate the feasibility of the proposed method with simulated timing data.Using a selected dataset from the Parkes Pulsar Timing Array data release 1 and the North American Nanohertz Observatory for Gravitational Waves publicly available datasets, we try to detect the signals from single SNFGW sources. The result is consistent with no GW detection with 65.5% probability. An all-sky map of the sensitivity of the selected pulsar timing array to single SNFGW sources is generated, and the position of the GW source where the selected pulsar timing array is most sensitive to is λ_s =.0.82,β_s =-1.03(rad); the corresponding minimum GW strain is h = 6.31 × 10^(-11) at f = 1 × 10^(-5) Hz.