Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the req...Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the requirements for the measurement of echo time of flight put forward by the ultrasonic flow measurement are analyzed. A new high-precision time interval measurement algorithm is presented, which combines the pulse counting method with the phase delay interpolation. The pulse counting method is used to ensure a large dynamic measuring range, and a double-edge triggering counter is designed to improve the accuracy and reduce the counting quantization error. The phase delay interpolation is used to reduce the quantization error of pulse counting for further improving the time measurement resolution. Test data show that the systexn for the measurement of the ultrasonic echo time of flight based on this algorithm and implemented on an Field Programmable Gate Army(FleA) needs a relatively short time for measurement, and has a measurement error of less than 105 ps.展开更多
Integrated profile is one of the basic characteristic of X-ray pulsar. Gaussian function fit is used to model the components of X-ray pulsar profile, and it is combined with Poisson distribution model of X-ray pulsar ...Integrated profile is one of the basic characteristic of X-ray pulsar. Gaussian function fit is used to model the components of X-ray pulsar profile, and it is combined with Poisson distribution model of X-ray pulsar to analyze Cramer-Rao low bound (CRLB) of phase, phase rate estimation and relation between CRLB and profile components. Then, a time domain method using minimum entropy is proposed for profile phase and phase rate estimation, and its effectiveness is explained using simulation examples.展开更多
A temporal approach to fast shape measurement is presented.In principle,the rotational object method is used in combination with the sequence pulse counting method (SPCM) to determine the height of the object through ...A temporal approach to fast shape measurement is presented.In principle,the rotational object method is used in combination with the sequence pulse counting method (SPCM) to determine the height of the object through calculating the related phase.Two specimens are tested to demonstrate the validity of the approach.One is an object covered by a Chinese character (tea) with a height variety of 0.3 mm,and the other is an object surface with a relatively large fluctuation of 3.5 mm.The experimental results are compared with mechanical measurements.An axis shifting method is also proposed to determine shapes with relatively large fluctuations.Effects of such parameters on the height measurement as incident angle of the dual light beams,tilting angle of the object,and azimuth angle of the measured point are discussed as well.展开更多
基金supported by the National 863 Program(No.2008AA042207)
文摘Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the requirements for the measurement of echo time of flight put forward by the ultrasonic flow measurement are analyzed. A new high-precision time interval measurement algorithm is presented, which combines the pulse counting method with the phase delay interpolation. The pulse counting method is used to ensure a large dynamic measuring range, and a double-edge triggering counter is designed to improve the accuracy and reduce the counting quantization error. The phase delay interpolation is used to reduce the quantization error of pulse counting for further improving the time measurement resolution. Test data show that the systexn for the measurement of the ultrasonic echo time of flight based on this algorithm and implemented on an Field Programmable Gate Army(FleA) needs a relatively short time for measurement, and has a measurement error of less than 105 ps.
基金supported by the National Hi-Tech Research and Development Program of China ("863" Project) (Grant No. 2007AA12Z323)the National Natural Science Foundation of China (Grant No. 60772139)
文摘Integrated profile is one of the basic characteristic of X-ray pulsar. Gaussian function fit is used to model the components of X-ray pulsar profile, and it is combined with Poisson distribution model of X-ray pulsar to analyze Cramer-Rao low bound (CRLB) of phase, phase rate estimation and relation between CRLB and profile components. Then, a time domain method using minimum entropy is proposed for profile phase and phase rate estimation, and its effectiveness is explained using simulation examples.
基金supported by the National Natural Science Foundation of China(Grants Nos. 10972113,10732080)the National Basic Research Program of China(Grant Nos. 2007CB936803,2010CB631005)SRFDP(Grant No. 20070003053)
文摘A temporal approach to fast shape measurement is presented.In principle,the rotational object method is used in combination with the sequence pulse counting method (SPCM) to determine the height of the object through calculating the related phase.Two specimens are tested to demonstrate the validity of the approach.One is an object covered by a Chinese character (tea) with a height variety of 0.3 mm,and the other is an object surface with a relatively large fluctuation of 3.5 mm.The experimental results are compared with mechanical measurements.An axis shifting method is also proposed to determine shapes with relatively large fluctuations.Effects of such parameters on the height measurement as incident angle of the dual light beams,tilting angle of the object,and azimuth angle of the measured point are discussed as well.