Functionalized implants demonstrate an upgraded approach in orthopedic implants,aiming to achieve long term success through improved bio integration.Bioceramic coatings with multifunctionality have arisen as an effect...Functionalized implants demonstrate an upgraded approach in orthopedic implants,aiming to achieve long term success through improved bio integration.Bioceramic coatings with multifunctionality have arisen as an effective substitute for conventional coatings,owing to their combination of various properties that are essential for bio-implants,such as osteointegration and antibacterial character.In the present study,thin hopeite coatings were produced by Pulsed laser deposition(PLD)and radio frequency magnetron sputtering(RFMS)on Ti64 substrates.The obtained hopeite coatings were annealed at 500°C in ambient air and studied in terms of surface morphology,phase composition,surface roughness,adhesion strength,antibacterial efficacy,apatite forming ability,and surface wettability by scanning electron microscope(SEM),X-ray diffraction(XRD),atomic force microscope(AFM),tensometer,fluorescence-activated cell sorting(FACS),simulated body fluid(SBF)immersion test and contact angle goniometer,respectively.Furthermore,based on promising results obtained in the present work it can be summarized that the new generation multifunctional hopeite coating synthesized by two alternative new process routes of PLD and RFMS on Ti64 substrates,provides effective alternatives to conventional coatings,largely attributed to strong osteointegration and antibacterial character of deposited hopeite coating ensuring the overall stability of metallic orthopedic implants.展开更多
文摘Functionalized implants demonstrate an upgraded approach in orthopedic implants,aiming to achieve long term success through improved bio integration.Bioceramic coatings with multifunctionality have arisen as an effective substitute for conventional coatings,owing to their combination of various properties that are essential for bio-implants,such as osteointegration and antibacterial character.In the present study,thin hopeite coatings were produced by Pulsed laser deposition(PLD)and radio frequency magnetron sputtering(RFMS)on Ti64 substrates.The obtained hopeite coatings were annealed at 500°C in ambient air and studied in terms of surface morphology,phase composition,surface roughness,adhesion strength,antibacterial efficacy,apatite forming ability,and surface wettability by scanning electron microscope(SEM),X-ray diffraction(XRD),atomic force microscope(AFM),tensometer,fluorescence-activated cell sorting(FACS),simulated body fluid(SBF)immersion test and contact angle goniometer,respectively.Furthermore,based on promising results obtained in the present work it can be summarized that the new generation multifunctional hopeite coating synthesized by two alternative new process routes of PLD and RFMS on Ti64 substrates,provides effective alternatives to conventional coatings,largely attributed to strong osteointegration and antibacterial character of deposited hopeite coating ensuring the overall stability of metallic orthopedic implants.