Effects of aging and self-organized criticality in a pulse-coupled integrate-and-fire neuron model based on small world networks have been studied. We give the degree distribution of aging network, average shortest p...Effects of aging and self-organized criticality in a pulse-coupled integrate-and-fire neuron model based on small world networks have been studied. We give the degree distribution of aging network, average shortest path length, the diameter of our network, and the clustering coefficient, and find that our neuron model displays the power-law behavior, and with the number of added links increasing, the effects of aging become smaller and smaller. This shows that if the brain works at the self-organized criticality state, it can relieve some effects caused by aging.展开更多
In this paper, a class of delay differential equations with nonlinear impulsive control is discussed. Based on the nonsmooth analysis, criteria of stability are obtained for delay differential equations with nonlinear...In this paper, a class of delay differential equations with nonlinear impulsive control is discussed. Based on the nonsmooth analysis, criteria of stability are obtained for delay differential equations with nonlinear impulses control under certain conditions. These criteria can be applied to some neural network models. At the end of the paper, two examples are provided to illustrate the feasibility and effectiveness of the proposed results.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10675060
文摘Effects of aging and self-organized criticality in a pulse-coupled integrate-and-fire neuron model based on small world networks have been studied. We give the degree distribution of aging network, average shortest path length, the diameter of our network, and the clustering coefficient, and find that our neuron model displays the power-law behavior, and with the number of added links increasing, the effects of aging become smaller and smaller. This shows that if the brain works at the self-organized criticality state, it can relieve some effects caused by aging.
基金supported by Natural Science Foundation of China under Grant Nos.10972018 and 11072013
文摘In this paper, a class of delay differential equations with nonlinear impulsive control is discussed. Based on the nonsmooth analysis, criteria of stability are obtained for delay differential equations with nonlinear impulses control under certain conditions. These criteria can be applied to some neural network models. At the end of the paper, two examples are provided to illustrate the feasibility and effectiveness of the proposed results.