In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling a...In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling algorithm is proposed. First, the time marks of every rising edge of the rotating speed pulse and the corresponding amplitudes of faulty bearing vibration signal are determined. Then, every adjacent the rotating pulse is divided equally, and the time marks in every adjacent rotating speed pulses and the corresponding amplitudes of vibration signal are obtained by the interpolation algorithm. Finally, all the time marks and the corresponding amplitudes of vibration signal are arranged and the time marks are transformed into the angle domain to obtain the resampling signal. Speed-up and speed-down faulty bearing signals are employed to verify the validity of the proposed method, and experimental results show that the proposed method is effective for diagnosing faulty bearings. Furthermore, the traditional order tracking techniques are applied to the experimental bearing signals, and the results show that the proposed method produces higher accurate outcomes in less computation time.展开更多
In the present letters we study the propagation of smooth pulses in anomalously dispersive media. We prove that non-analytical but smooth points in a pulse still propagate with the vacuum speed of light, c. It gives a...In the present letters we study the propagation of smooth pulses in anomalously dispersive media. We prove that non-analytical but smooth points in a pulse still propagate with the vacuum speed of light, c. It gives an upper limit for signal velocity as well as the non-continuous points of the envelop of a pulse or its derivatives of arbitrary order do.展开更多
基金Fundamental Research Funds for the Central Universities(No.2016JBM051)
文摘In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling algorithm is proposed. First, the time marks of every rising edge of the rotating speed pulse and the corresponding amplitudes of faulty bearing vibration signal are determined. Then, every adjacent the rotating pulse is divided equally, and the time marks in every adjacent rotating speed pulses and the corresponding amplitudes of vibration signal are obtained by the interpolation algorithm. Finally, all the time marks and the corresponding amplitudes of vibration signal are arranged and the time marks are transformed into the angle domain to obtain the resampling signal. Speed-up and speed-down faulty bearing signals are employed to verify the validity of the proposed method, and experimental results show that the proposed method is effective for diagnosing faulty bearings. Furthermore, the traditional order tracking techniques are applied to the experimental bearing signals, and the results show that the proposed method produces higher accurate outcomes in less computation time.
文摘In the present letters we study the propagation of smooth pulses in anomalously dispersive media. We prove that non-analytical but smooth points in a pulse still propagate with the vacuum speed of light, c. It gives an upper limit for signal velocity as well as the non-continuous points of the envelop of a pulse or its derivatives of arbitrary order do.