期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进UNet模型的截断脉冲高度估计器
1
作者 唐琳 周爽 +2 位作者 廖先莉 刘泽 李波 《核技术》 CAS CSCD 北大核心 2023年第11期80-87,共8页
针对测量系统本身导致的脉冲截断给脉冲高度分析带来的挑战,本研究提出一种复合神经网络模型,用于预测产生了截断的脉冲高度。该模型将长短期记忆模型(Long and Short-term Memory,LSTM)嵌入UNet结构,采用模拟脉冲数据集对模型进行训练... 针对测量系统本身导致的脉冲截断给脉冲高度分析带来的挑战,本研究提出一种复合神经网络模型,用于预测产生了截断的脉冲高度。该模型将长短期记忆模型(Long and Short-term Memory,LSTM)嵌入UNet结构,采用模拟脉冲数据集对模型进行训练,使用相对误差指标对模型性能进行评估。结果显示:在对模拟脉冲序列进行脉冲高度估计时,UNet-LSTM模型的平均相对误差约为2.31%,相较于传统的梯形成形算法的平均相对误差降低了1.91%;在粉末铁矿样品和粉末岩石样品的实际测量中,不同截断率的实测脉冲序列也进一步验证了UNet-LSTM模型的脉冲高度估计性能,在两种样品、8组离线脉冲序列的高度估计中得到的平均相对误差为2.36%,表明该模型可以准确估计截断脉冲的高度。 展开更多
关键词 UNet 长短期记忆模型 脉冲截断 脉冲高度估计
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部