期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
低浓度瓦斯自激振荡脉动燃烧特性研究 被引量:7
1
作者 袁隆基 林柏泉 耿凡 《煤炭学报》 EI CAS CSCD 北大核心 2014年第A01期250-256,共7页
针对煤矿低浓度瓦斯稳定燃烧及高效利用难的问题,将脉动燃烧技术与煤矿低浓度瓦斯燃烧利用相结合,采用数值模拟与实验研究相结合的方法,对低浓度瓦斯脉动燃烧特性进行了系列研究。基于Fluent计算平台,建立低浓度瓦斯脉动燃烧热力学模型... 针对煤矿低浓度瓦斯稳定燃烧及高效利用难的问题,将脉动燃烧技术与煤矿低浓度瓦斯燃烧利用相结合,采用数值模拟与实验研究相结合的方法,对低浓度瓦斯脉动燃烧特性进行了系列研究。基于Fluent计算平台,建立低浓度瓦斯脉动燃烧热力学模型,对脉动燃烧器内部流场、温度场、压力场进行模拟分析,同时通过改变脉动参数研究各参数对低浓度瓦斯燃烧特性的影响。发现并揭示了燃烧器内压力和温度的分布规律、尾管长度与脉动频率的关系、热负荷和瓦斯浓度与燃烧室温度之间的关系,并与实验结果进行了对比,发现计算值与实验值吻合较好,说明该模型能够预测低浓度瓦斯脉动燃烧特性。 展开更多
关键词 低浓度瓦斯 燃烧特性 自激振荡燃烧
下载PDF
电液比拟的液压油缸管路系统动态特性分析 被引量:2
2
作者 秦磊 吴仁智 《重庆理工大学学报(自然科学)》 CAS 北大核心 2021年第8期246-256,共11页
外负载冲击对液压油缸管路系统造成较大的压力振荡脉动,管路密封、连接等受到不利影响。将液压油缸管路系统动力学方程中的参数转换成液容、液感、液阻3项,以“基尔霍夫电压/电流定律”为基础,与电路类比后建立起液压油缸管路系统的电... 外负载冲击对液压油缸管路系统造成较大的压力振荡脉动,管路密封、连接等受到不利影响。将液压油缸管路系统动力学方程中的参数转换成液容、液感、液阻3项,以“基尔霍夫电压/电流定律”为基础,与电路类比后建立起液压油缸管路系统的电路化模拟等效回路,通过仿真分析,得到各参数的动态响应及相互关联关系。结果表明:液容和液感均会产生较大幅值的压力振荡脉动,但两者的综合作用呈现较小幅值的压力振荡脉动,证明了液容与液感间发生了较大的能量互换,压力振荡脉动主要由液容和液感产生。为控制压力振荡脉动,需使油缸管路参数响应的频率与外负载的共振频率相同,并推导出外负载阻尼比ζ=1时,可使整个液压油缸管路系统具备调节时间和上升时间较适宜的控制性能,压力振荡脉动的频率接近零。研究结果可为液压油缸管路系统压力振荡脉动的控制及管路设计提供理论依据。 展开更多
关键词 液压油缸 液压管路 电路 压力振荡 控制
下载PDF
撞击流反应器内流场特性研究进展 被引量:7
3
作者 张建伟 张志刚 +1 位作者 冯颖 施博文 《化工进展》 EI CAS CSCD 北大核心 2017年第10期3540-3548,共9页
综述了国内外撞击流反应器内流场速度和脉动振荡特性的研究进展。目前,对非限制撞击流反应器内撞击流体的径向速度发展及轴向速度与撞击驻点的脉动特性都有了系统研究,对撞击驻点的振荡模式进行了划分,并得出大量适用于不同喷嘴间距的... 综述了国内外撞击流反应器内流场速度和脉动振荡特性的研究进展。目前,对非限制撞击流反应器内撞击流体的径向速度发展及轴向速度与撞击驻点的脉动特性都有了系统研究,对撞击驻点的振荡模式进行了划分,并得出大量适用于不同喷嘴间距的速度关联式,但对驻点振荡模式的产生机理还没有明确解释。层流状态下随着雷诺数增大,众多学者对受限撞击流反应器内流型的流动模式进行了划分,提出了出现吞噬流模式的临界参数关联式,由于结构等参数的变化当前还没有普遍适用控制流型模式变化的关联式。在浸没撞击流反应器内用非线性分析法确定撞击区并划分了流场区域,但目前尚不能揭示湍流状态下流场能量分布与速度信号等的变化规律。最后作者对撞击流反应器内部流场结构的研究前景进行了展望。 展开更多
关键词 撞击流反应器 流场特性 脉动振荡 速度场
下载PDF
A fast integration method for translating-pulsating source Green's function in Bessho form 被引量:5
4
作者 Chao-bang YAO Wen-cai DONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2014年第2期108-119,共12页
The singularities and oscillatory performance of translating-pulsating source Green's function in Bessho form were analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitut... The singularities and oscillatory performance of translating-pulsating source Green's function in Bessho form were analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitution method (VSM), and steepest descent integration method (SDIM) were used to evaluate this type of Green's function. For SDIM, the complex domain was restricted only on the 0-plane. Meanwhile, the integral along the real axis was computed by use of the VSM to avoid the complication of a numerical search of the steepest descent line. Furthermore, the steepest descent line was represented by the B-spline function. Based on this representation, a new self-compatible integration method corresponding to parametric t was established. The numerical method was validated through comparison with other existing results, and was shown to be efficient and reliable in the calculation of the velocity potentials for the 3D seakeeping and hydrodynamic performance of floating struc- tures moving in waves. 展开更多
关键词 Translating-pulsating source Green's function Oscillatory performance False singularities point Steepest descentintegration method (SDIM) Variable substitution method (VSM)
原文传递
Characteristic and Mechanism of Pressure Fluctuation Caused by Self-Induced Oscillation of Supersonic Impinging Jet
5
作者 Tsuyoshi Yasunobu Yumiko Otobe Hideo Kashimura 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第2期123-127,共5页
When the underexpanded supersonic jet impinges on the obstacle, it is well known that the self-induced flow os- cillation occurs. This oscillation depends on the pressure ratio in the flowfield, the position of an obs... When the underexpanded supersonic jet impinges on the obstacle, it is well known that the self-induced flow os- cillation occurs. This oscillation depends on the pressure ratio in the flowfield, the position of an obstacle and is related with the noise problems of aeronautical and other industrial engineering. The characteristic and the mechanism of self-induced flow oscillation, have to be clarified to control various noise problems. But, it seems that the characteristics of the oscillated flowfield and the mechanism of an oscillation have to be more cleared to control the oscillation. This paper aims to clarify the effect of the pressure ratio and the obstacle position and the mechanism of self-induced flow oscillation by numerical analysis and experiment, when the underexpanded su- personic jet impinges on the cylindrical body. From the result of this study, it is clear that occurrence of the self-induced flow osciUation depends on the pressure balance in the flowfield. 展开更多
关键词 Supersonic Jet Mach Disk Barrel Shock Flow Oscillation Flow Visualization Numerical Analysis
原文传递
Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES 被引量:24
6
作者 HUANG JingBo XIAO ZhiXiang +1 位作者 LIU Jian FU Song 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第2期260-271,共12页
In the present paper,extremely unsteady shock wave buffet induced by strong shock wave/boundary-layer interactions (SWBLI) on the upper surface of an OAT15A supercritical airfoil at Mach number of 0.73 and angle of at... In the present paper,extremely unsteady shock wave buffet induced by strong shock wave/boundary-layer interactions (SWBLI) on the upper surface of an OAT15A supercritical airfoil at Mach number of 0.73 and angle of attack of 3.5 degrees is first numerically simulated by IDDES,one of the most advanced RANS/LES hybrid methods.The results imply that conventional URANS methods are unable to effectively predict the buffet phenomenon on the wing surface;IDDES,which involves more flow physics,predicted buffet phenomenon.Some complex flow phenomena are predicted and demonstrated,such as periodical oscillations of shock wave in the streamwise direction,strong shear layer detached from the shock wave due to SWBLI and plenty of small scale structures broken down by the shear layer instability and in the wake.The root mean square (RMS) of fluctuating pressure coefficients and streamwise range of shock wave oscillation reasonably agree with experimental data.Then,two vortex generators (VG) both with an inclination angle of 30 degrees to the main flow directions are mounted in front of the shock wave region on the upper surface to suppress shock wave buffet.The results show that shock wave buffet can be significantly suppressed by VGs,the RMS level of pressure in the buffet region is effectively reduced,and averaged shock wave position is obviously pushed downstream,resulting in increased total lift. 展开更多
关键词 supercritical airfoil vortex generator shock wave buffet
原文传递
Unsteady Transonic Flow Control around an Airfoil in a Channel
7
作者 Md.Abdul Hamid A.B.M.Toufique Hasan +3 位作者 Mohammad Ali Yuichi Mitsutake Toshiaki Setoguchi Shen Yu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第2期117-122,共6页
Transonic internal flow around an airfoil is associated with self-excited unsteady shock wave oscillation. This unsteady phenomenon generates buffet, high speed impulsive noise, non-synchronous vibration, high cycle f... Transonic internal flow around an airfoil is associated with self-excited unsteady shock wave oscillation. This unsteady phenomenon generates buffet, high speed impulsive noise, non-synchronous vibration, high cycle fatigue failure and so on. Present study investigates the effectiveness of perforated cavity to control this unsteady flow field. The cavity has been incorporated on the airfoil surface. The degree of perforation of the cavity is kept constant as 30%. However, the number of openings(perforation) at the cavity upper wall has been varied. Results showed that this passive control reduces the strength of shock wave compared to that of baseline airfoil. As a result, the intensity of shock wave/boundary layer interaction and the root mean square(RMS) of pressure oscillation around the airfoil have been reduced with the control method. 展开更多
关键词 transonic flow passive control shock wave oscillation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部