When the synthetic aperture focusing technology (SAFT) is used for the detection of the concrete, the signal-to-noise ratio (SNR) and detection depth are not satisfactory. Therefore, the application of SAFT is usu...When the synthetic aperture focusing technology (SAFT) is used for the detection of the concrete, the signal-to-noise ratio (SNR) and detection depth are not satisfactory. Therefore, the application of SAFT is usually limited. In this paper, we propose an improved SAFT technique for the detection of concrete based on the pulse compression technique used in the Radar domain. The proposed method first transmits a linear frequency modulation (LFM) signal, and then compresses the echo signal using the matched filtering method, after which a compressed signal with a narrower main lobe and higher SNR is obtained. With our improved SAFT, the compressed signals are manipulated in the imaging process and the image contrast is improved. Results show that the SNR is improved and the imaging resolution is guaranteed compared with the conventional short-pulse method. From theoretical and experimental results, we show that the proposed method can suppress noise and improve imaging contrast, and can also be used to detect multiple defects in concrete.展开更多
This paper describes a pulse compressor implementation with DSP for small Time Bandwidth (TB) product Linear Frequency Modulation (LFM) waveform. It contains the digital generation of the LFM waveform and the dig...This paper describes a pulse compressor implementation with DSP for small Time Bandwidth (TB) product Linear Frequency Modulation (LFM) waveform. It contains the digital generation of the LFM waveform and the digital internally Hamming weighted compression filter. Two methods for suppression of time sidelobe of the digital pulse compressor are employed. First, the LFM waveform is modified by using cubic phase pre distortion for reducing the effect of Fresnel ripples in small TB product LFM waveform. Secondly, anti aliasing filter is used before A/D converter for reducing spectrum skirt level of the returned LFM waveform. The parameters of the compression filter implemented with IMSA100 DSP are programmable. The experiments show that the peak time sidelobe level of the digital pulse compressor is less than -32 dB for TB product of 20.展开更多
In this paper,a novel UWB communication system structure is proposed.The transmitted signal uses OOK modulation and chirp spread spectrum.The received signal first goes through a dechirp pulse compression process,and ...In this paper,a novel UWB communication system structure is proposed.The transmitted signal uses OOK modulation and chirp spread spectrum.The received signal first goes through a dechirp pulse compression process,and then is processed with a two-level sliding correlation algorithm for coarse timing synchronization and fine timing synchronization.After the SNR estimation,the signal is demodulated by an energy detection method.An integrated system level simulation model is established,and the performance of this system is evaluated over the AWGN channel,IEEE 802.15.3a CM1 and CM4 channels.The theoretical analysis and simulation results show that this UWB communication system can effectively reduce the sampling rate and signal processing speed at the receiver,and it is more suitable for long-distance and low-rate UWB communications with high spreading gain.展开更多
基金supported by the National Natural Science Foundation of China(No.11074273)the ministry of water resources'special funds for scientific research on public causes(No.201301061)
文摘When the synthetic aperture focusing technology (SAFT) is used for the detection of the concrete, the signal-to-noise ratio (SNR) and detection depth are not satisfactory. Therefore, the application of SAFT is usually limited. In this paper, we propose an improved SAFT technique for the detection of concrete based on the pulse compression technique used in the Radar domain. The proposed method first transmits a linear frequency modulation (LFM) signal, and then compresses the echo signal using the matched filtering method, after which a compressed signal with a narrower main lobe and higher SNR is obtained. With our improved SAFT, the compressed signals are manipulated in the imaging process and the image contrast is improved. Results show that the SNR is improved and the imaging resolution is guaranteed compared with the conventional short-pulse method. From theoretical and experimental results, we show that the proposed method can suppress noise and improve imaging contrast, and can also be used to detect multiple defects in concrete.
文摘This paper describes a pulse compressor implementation with DSP for small Time Bandwidth (TB) product Linear Frequency Modulation (LFM) waveform. It contains the digital generation of the LFM waveform and the digital internally Hamming weighted compression filter. Two methods for suppression of time sidelobe of the digital pulse compressor are employed. First, the LFM waveform is modified by using cubic phase pre distortion for reducing the effect of Fresnel ripples in small TB product LFM waveform. Secondly, anti aliasing filter is used before A/D converter for reducing spectrum skirt level of the returned LFM waveform. The parameters of the compression filter implemented with IMSA100 DSP are programmable. The experiments show that the peak time sidelobe level of the digital pulse compressor is less than -32 dB for TB product of 20.
基金Supported by the National High Technology Research and Development Program of China(No.2009 AA011202,2009AA011205)the National Science and Technology Major Project of China(No.2009ZX03006-007)
文摘In this paper,a novel UWB communication system structure is proposed.The transmitted signal uses OOK modulation and chirp spread spectrum.The received signal first goes through a dechirp pulse compression process,and then is processed with a two-level sliding correlation algorithm for coarse timing synchronization and fine timing synchronization.After the SNR estimation,the signal is demodulated by an energy detection method.An integrated system level simulation model is established,and the performance of this system is evaluated over the AWGN channel,IEEE 802.15.3a CM1 and CM4 channels.The theoretical analysis and simulation results show that this UWB communication system can effectively reduce the sampling rate and signal processing speed at the receiver,and it is more suitable for long-distance and low-rate UWB communications with high spreading gain.