AIM: To characterize the profiles of alveolar hypoventilation during colonoscopies performed under sedoanalgesia with a combination of alfentanil and either midazolam or propofol. METHODS: Consecutive patients undergo...AIM: To characterize the profiles of alveolar hypoventilation during colonoscopies performed under sedoanalgesia with a combination of alfentanil and either midazolam or propofol. METHODS: Consecutive patients undergoing routine colonoscopy were randomly assigned to sedation with either propofol or midazolam in an open-labeled design using a titration scheme. All patients received 4 μg/kg per body weight alfentanil for analgesia and 3 L of supplemental oxygen. Oxygen saturation (SpO 2 ) was measured by pulse oximetry (POX), and capnography (PcCO 2 ) was continuously measured using a combined dedicated sensor at the ear lobe. Instances of apnea resulting in measures such as stimulation of the patient, a chin lift, a mask maneuver, or withholding of sedation were recorded. PcCO 2 values (as a parameter of sedation-induced hypoventilation) were compared between groups at the following distinct time points: baseline, maximal rise, termination of the procedure and 5 min after termination of the procedure. The number of patients in both study groups who regained baseline PcCO 2 values (± 1.5 mmHg) five minutes after the procedure was determined.RESULTS: A total of 97 patients entered this study. The data from 14 patients were subsequently excluded for clinical procedure-related reasons or for technical problems. Therefore, 83 patients (mean age 62 ± 13 years) were successfully randomized to receive propofol (n = 42) or midazolam (n = 41) for sedation. Most of the patients were classified as American Society of Anesthesiologists (ASA) Ⅱ [16 (38%) in the midazolam group and 15 (32%) in the propofol group] and ASA Ⅲ [14 (33%) and 13 (32%) in the midazolam and propofol groups, respectively]. A mean dose of 5 (4-7) mg of Ⅳ midazolam and 131 (70-260) mg of Ⅳ propofol was used during the procedure in the corresponding study arms. The mean SpO 2 at baseline (%) was 99 ± 1 for the midazolam group and 99 ± 1 for the propofol group. No cases of hypoxemia (SpO 2 < 85%) or apnea were recorded. However, an increase in PcCO 2 that indicated alveolar hypoventilation occurred in both groups after administration of the first drug and was not detected with pulse oximetry alone. The mean interval between the initiation of sedation and the time when the PcCO 2 value increased to more than 2 mmHg was 2.8 ± 1.3 min for midazolam and 2.8 ± 1.1 min for propofol. The mean maximal rise was similar for both drugs: 8.6 ± 3.7 mmHg for midazolam and 7.4 ± 3.2 mmHg for propofol. Five minutes after the end of the procedure, the mean difference from the baseline values was significantly lower for the propofol treatment compared with midazolam (0.9 ± 3.0 mmHg vs 4.3 ± 3.7 mmHg, P = 0.0000169), and significantly more patients in the propofol group had regained their baseline value ± 1.5 mmHg (32 of 41vs 12 of 42,P = 0.0004). CONCLUSION: A significantly higher number of patients sedated with propofol had normalized PcCO 2 values five minutes after sedation when compared with patients sedated with midazolam.展开更多
Objective To assess the possibility of using arterial pressure waveform or pulse oximetry plethysmographic waveform variation to estimate the pulmonary arterial wedge pressure (PAWP) Methods Fourteen American Socie...Objective To assess the possibility of using arterial pressure waveform or pulse oximetry plethysmographic waveform variation to estimate the pulmonary arterial wedge pressure (PAWP) Methods Fourteen American Society of Anesthesiologists grade Ⅰ-Ⅱ patients aged 33-69 years and weighing 62 0±9 5 kg scheduled for elective abdominal tumor surgery were studied Their hemoglobin exceeded 120 g/L and hematocrit exceeded 35% Pre operative acute hypervolemic hemodilution was applied immediately after general anesthestic induction and tracheal intubation PAWP, systolic pressure variation (SPV), delta down (dDown), SPV plet , dDown plet and other hemodynamic parameters were measured and recorded when total fluid volume (crystalloid and colloid) infused reached 10 ml/kg and 20 ml/kg and again at the end of the operation Central venous pressure was maintained at 10-12 mm Hg during operation Systolic blood pressure at the end of Valsalva maneuver (airway pressure was kept at 22 mm Hg) and the systolic pressure before the Valsalva manoeuvre during apnea were used to calculate arterial pressure ratio (APR) Results APR, SPV, dDown, SPV plet and dDown plet all correlated well with PAWP ( r =0 717, -0 695, -0 680, -0 522 and -0 624 respectively, P <0 01) There was a closer linear correlation between APR and PAWP than between the other parameters The regression equation was PAWP (mm Hg)=0 207×APR (%)-0 382 Conclusion During positive pressure mechanical ventilation, APR, SPV, dDown, SPV plet and dDown plet can be used to estimate PAWP effectively展开更多
文摘AIM: To characterize the profiles of alveolar hypoventilation during colonoscopies performed under sedoanalgesia with a combination of alfentanil and either midazolam or propofol. METHODS: Consecutive patients undergoing routine colonoscopy were randomly assigned to sedation with either propofol or midazolam in an open-labeled design using a titration scheme. All patients received 4 μg/kg per body weight alfentanil for analgesia and 3 L of supplemental oxygen. Oxygen saturation (SpO 2 ) was measured by pulse oximetry (POX), and capnography (PcCO 2 ) was continuously measured using a combined dedicated sensor at the ear lobe. Instances of apnea resulting in measures such as stimulation of the patient, a chin lift, a mask maneuver, or withholding of sedation were recorded. PcCO 2 values (as a parameter of sedation-induced hypoventilation) were compared between groups at the following distinct time points: baseline, maximal rise, termination of the procedure and 5 min after termination of the procedure. The number of patients in both study groups who regained baseline PcCO 2 values (± 1.5 mmHg) five minutes after the procedure was determined.RESULTS: A total of 97 patients entered this study. The data from 14 patients were subsequently excluded for clinical procedure-related reasons or for technical problems. Therefore, 83 patients (mean age 62 ± 13 years) were successfully randomized to receive propofol (n = 42) or midazolam (n = 41) for sedation. Most of the patients were classified as American Society of Anesthesiologists (ASA) Ⅱ [16 (38%) in the midazolam group and 15 (32%) in the propofol group] and ASA Ⅲ [14 (33%) and 13 (32%) in the midazolam and propofol groups, respectively]. A mean dose of 5 (4-7) mg of Ⅳ midazolam and 131 (70-260) mg of Ⅳ propofol was used during the procedure in the corresponding study arms. The mean SpO 2 at baseline (%) was 99 ± 1 for the midazolam group and 99 ± 1 for the propofol group. No cases of hypoxemia (SpO 2 < 85%) or apnea were recorded. However, an increase in PcCO 2 that indicated alveolar hypoventilation occurred in both groups after administration of the first drug and was not detected with pulse oximetry alone. The mean interval between the initiation of sedation and the time when the PcCO 2 value increased to more than 2 mmHg was 2.8 ± 1.3 min for midazolam and 2.8 ± 1.1 min for propofol. The mean maximal rise was similar for both drugs: 8.6 ± 3.7 mmHg for midazolam and 7.4 ± 3.2 mmHg for propofol. Five minutes after the end of the procedure, the mean difference from the baseline values was significantly lower for the propofol treatment compared with midazolam (0.9 ± 3.0 mmHg vs 4.3 ± 3.7 mmHg, P = 0.0000169), and significantly more patients in the propofol group had regained their baseline value ± 1.5 mmHg (32 of 41vs 12 of 42,P = 0.0004). CONCLUSION: A significantly higher number of patients sedated with propofol had normalized PcCO 2 values five minutes after sedation when compared with patients sedated with midazolam.
文摘Objective To assess the possibility of using arterial pressure waveform or pulse oximetry plethysmographic waveform variation to estimate the pulmonary arterial wedge pressure (PAWP) Methods Fourteen American Society of Anesthesiologists grade Ⅰ-Ⅱ patients aged 33-69 years and weighing 62 0±9 5 kg scheduled for elective abdominal tumor surgery were studied Their hemoglobin exceeded 120 g/L and hematocrit exceeded 35% Pre operative acute hypervolemic hemodilution was applied immediately after general anesthestic induction and tracheal intubation PAWP, systolic pressure variation (SPV), delta down (dDown), SPV plet , dDown plet and other hemodynamic parameters were measured and recorded when total fluid volume (crystalloid and colloid) infused reached 10 ml/kg and 20 ml/kg and again at the end of the operation Central venous pressure was maintained at 10-12 mm Hg during operation Systolic blood pressure at the end of Valsalva maneuver (airway pressure was kept at 22 mm Hg) and the systolic pressure before the Valsalva manoeuvre during apnea were used to calculate arterial pressure ratio (APR) Results APR, SPV, dDown, SPV plet and dDown plet all correlated well with PAWP ( r =0 717, -0 695, -0 680, -0 522 and -0 624 respectively, P <0 01) There was a closer linear correlation between APR and PAWP than between the other parameters The regression equation was PAWP (mm Hg)=0 207×APR (%)-0 382 Conclusion During positive pressure mechanical ventilation, APR, SPV, dDown, SPV plet and dDown plet can be used to estimate PAWP effectively