When the synthetic aperture focusing technology (SAFT) is used for the detection of the concrete, the signal-to-noise ratio (SNR) and detection depth are not satisfactory. Therefore, the application of SAFT is usu...When the synthetic aperture focusing technology (SAFT) is used for the detection of the concrete, the signal-to-noise ratio (SNR) and detection depth are not satisfactory. Therefore, the application of SAFT is usually limited. In this paper, we propose an improved SAFT technique for the detection of concrete based on the pulse compression technique used in the Radar domain. The proposed method first transmits a linear frequency modulation (LFM) signal, and then compresses the echo signal using the matched filtering method, after which a compressed signal with a narrower main lobe and higher SNR is obtained. With our improved SAFT, the compressed signals are manipulated in the imaging process and the image contrast is improved. Results show that the SNR is improved and the imaging resolution is guaranteed compared with the conventional short-pulse method. From theoretical and experimental results, we show that the proposed method can suppress noise and improve imaging contrast, and can also be used to detect multiple defects in concrete.展开更多
A static approach method method is used to get the spectrum expression of the pulse interval modulation signal.The expression is simple,has a clear physical concept and it has been confirmed by a simultaneous experiment.
The output characteristics of nonlinear optical fiber-loop mirror are analyzed in detail when the pump pulses with the same wavelength are input in the both directions for recovering the clock component of the signal ...The output characteristics of nonlinear optical fiber-loop mirror are analyzed in detail when the pump pulses with the same wavelength are input in the both directions for recovering the clock component of the signal spectrum.It is found that the double output pulses are produced in the transmission port of the nonlinear optical fiber-loop mirror.The output pulse peaks are located in time domain at the rising and falling edges of the pump pulses.It is demonstrated that the rising and falling edges of the pump pulse can be directly extracted by this method.Through numerical simulation,the effects of therelative delay of pump pulses and the dispersion of fiber on the characteristics of output pulses are studied.By spectrum analysis,it is found that the spectrum of output pulse sequence includes the clock components of the pump pulse sequence,and a new idea is provided for all-optical clock extraction.展开更多
A novel method to generate binary frequency shift-keying(BFSK) radio frequency(RF) signals in optical domain is proposed.In the proposed system,an optical short pulse train is converted into super-Gaussian RF pulses w...A novel method to generate binary frequency shift-keying(BFSK) radio frequency(RF) signals in optical domain is proposed.In the proposed system,an optical short pulse train is converted into super-Gaussian RF pulses with high frequency based on optical pulse shaping by two Mach-Zehnder fiber interferometers(MZIs).And the generated RF signals are coded using a fast electro-optic switch.By properly designing the MZIs,BFSK RF signals with desired code pattern and modulation index can be generated.A theoretical model for describing the system is developed,and the generation of BFSK RF signals in millimeter-wave regime is demonstrated via simulations.展开更多
基金supported by the National Natural Science Foundation of China(No.11074273)the ministry of water resources'special funds for scientific research on public causes(No.201301061)
文摘When the synthetic aperture focusing technology (SAFT) is used for the detection of the concrete, the signal-to-noise ratio (SNR) and detection depth are not satisfactory. Therefore, the application of SAFT is usually limited. In this paper, we propose an improved SAFT technique for the detection of concrete based on the pulse compression technique used in the Radar domain. The proposed method first transmits a linear frequency modulation (LFM) signal, and then compresses the echo signal using the matched filtering method, after which a compressed signal with a narrower main lobe and higher SNR is obtained. With our improved SAFT, the compressed signals are manipulated in the imaging process and the image contrast is improved. Results show that the SNR is improved and the imaging resolution is guaranteed compared with the conventional short-pulse method. From theoretical and experimental results, we show that the proposed method can suppress noise and improve imaging contrast, and can also be used to detect multiple defects in concrete.
文摘A static approach method method is used to get the spectrum expression of the pulse interval modulation signal.The expression is simple,has a clear physical concept and it has been confirmed by a simultaneous experiment.
基金supported by the National High Technology Research and Development Program of China(No.2009AA01Z216)the Major State Basic Research and Development Program of China(No.2011CB301703)
文摘The output characteristics of nonlinear optical fiber-loop mirror are analyzed in detail when the pump pulses with the same wavelength are input in the both directions for recovering the clock component of the signal spectrum.It is found that the double output pulses are produced in the transmission port of the nonlinear optical fiber-loop mirror.The output pulse peaks are located in time domain at the rising and falling edges of the pump pulses.It is demonstrated that the rising and falling edges of the pump pulse can be directly extracted by this method.Through numerical simulation,the effects of therelative delay of pump pulses and the dispersion of fiber on the characteristics of output pulses are studied.By spectrum analysis,it is found that the spectrum of output pulse sequence includes the clock components of the pump pulse sequence,and a new idea is provided for all-optical clock extraction.
基金supported by the National Natural Science Foundation of China (No. 61032005)the Postdoctoral Science Foundation under Grant of China (No.2012M510442)
文摘A novel method to generate binary frequency shift-keying(BFSK) radio frequency(RF) signals in optical domain is proposed.In the proposed system,an optical short pulse train is converted into super-Gaussian RF pulses with high frequency based on optical pulse shaping by two Mach-Zehnder fiber interferometers(MZIs).And the generated RF signals are coded using a fast electro-optic switch.By properly designing the MZIs,BFSK RF signals with desired code pattern and modulation index can be generated.A theoretical model for describing the system is developed,and the generation of BFSK RF signals in millimeter-wave regime is demonstrated via simulations.