-
题名多层自适应模块化神经网络结构设计
被引量:12
- 1
-
-
作者
张昭昭
乔俊飞
余文
-
机构
辽宁工程技术大学电子与信息工程学院
北京工业大学信息学部
墨西哥国立理工高级研究中心自动控制中心
-
出处
《计算机学报》
EI
CSCD
北大核心
2017年第12期2827-2838,共12页
-
基金
国家自然科学基金(61440059,61533003)
国家杰出青年科学基金(61225016)
+1 种基金
辽宁省自然科学基金(201602363)
国家留学基金委资助~~
-
文摘
针对单一全互连前馈神经网络难以应对复杂问题及模块化神经网络应用时其结构难以确定的问题,该文基于脑式信息处理是采用无监督学习-半监督学习-监督学习的学习机制以及大脑是由多个功能模块组成,每个功能模块中又包含多个子模块,大脑对信息的学习是有目的的选择不同功能模块中多个子模块协同学习的事实,提出一种多层自适应模块化神经网络结构设计方法.其实质是首先对所有的训练数据采用概率密度峰值快速聚类算法确定训练数据的聚类中心,以此确定模块化神经网络中功能模块的个数,其次采用条件模糊聚类实现对每个功能模块中子模块的划分并确定每个子模块的训练样本集;对功能模块中的每一个子模块采用训练误差峰值构造RBF网络的增长算法,该算法能根据分配来的训练样本自适应构建子模块结构;在子模块集成方面,采用基于距离测度的子模块集成方法,该方法能从不同的功能模块中选择不同的子模块对训练样本协同处理.该文提出的模块化神经网络结构设计方法只需要2个人工参数且学习速度提高了近10倍,在一定程度上实现了神经网络的黑箱效应.最后,文中基于人工数据集的复杂函数拟合问题、双螺旋分类问题以及真实数据集的回归问题进行了实验,并与当前国际流行的网络结构进行了对比,结果显示文中提出的模块化神经网络网络结构解决了全互连RBF网络难以应对的复杂问题,而且学习精度高,学习速度快,最终网络的泛化性能强.
-
关键词
模块化神经网络
自适应
径向基函数
脑式信息处理
协同学习
-
Keywords
modular neural network
adaptive
RBF neural network
brain like information process
collaborative learning
-
分类号
TP18
[自动化与计算机技术—控制理论与控制工程]
-