针对目前多分类运动想象脑电识别存在特征提取单一、分类准确率低等问题,提出一种多特征融合的四分类运动想象脑电识别方法来提高识别率。对预处理后的脑电信号分别使用希尔伯特-黄变换、一对多共空间模式、近似熵、模糊熵、样本熵提取...针对目前多分类运动想象脑电识别存在特征提取单一、分类准确率低等问题,提出一种多特征融合的四分类运动想象脑电识别方法来提高识别率。对预处理后的脑电信号分别使用希尔伯特-黄变换、一对多共空间模式、近似熵、模糊熵、样本熵提取结合时频—空域—非线性动力学的初始特征向量,用主成分分析降维,最后使用粒子群优化支持向量机分类。该算法通过对国际标准数据集BCI2005 Data set IIIa中的k3b受试者数据经MATLAB仿真处理后获得93.30%的识别率,均高于单一特征和其它组合特征下的识别率。分别对四名实验者实验采集运动想象脑电数据,使用本研究提出的方法处理获得了72.96%的平均识别率。结果表明多特征融合的特征提取方法能更好的表征运动想象脑电信号,使用粒子群支持向量机可取得较高的识别准确率,为人脑的认知活动提供了一种新的识别方法。展开更多
In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in...In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in an EEG-based brain-computer interface (BCI) was studied. An auto search algorithm was developed to study four datasegment-related parameters in each trial of 12 subjects’ EEG. The length of data segment (LDS), the start position of data (SPD) segment, AR order, and number of trials (NT) were used to build the model. The study showed that, compared with the classification ratio (CR) without parameter selection, the CR was increased by 20% to 30% with proper selection of these data-segment-related parameters, and the optimum parameter values were subject-dependent. This suggests that the data-segment-related parameters should be individualized when building models for BCI.展开更多
Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provi...Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets.展开更多
In the study of brain-computer interfaces,a method of feature extraction and classification used fortwo kinds of imaginations is proposed.It considers Euclidean distance between mean traces recorded fromthe channels w...In the study of brain-computer interfaces,a method of feature extraction and classification used fortwo kinds of imaginations is proposed.It considers Euclidean distance between mean traces recorded fromthe channels with two kinds of imaginations as a feature,and determines imagination classes using thresh-old value.It analyzed the background of experiment and theoretical foundation referring to the data sets ofBCI 2003,and compared the classification precision with the best result of the competition.The resultshows that the method has a high precision and is advantageous for being applied to practical systems.展开更多
In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency d...In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an improved self-organizing map(ISOM) neuron network was proposed, which successfully identify three different brain status of the subjects: awareness, drowsiness and sleep. Compared with traditional SOM, the experiment results show that the ISOM generates much better classification accuracy, reaching as high as 89.59%.展开更多
In this paper, we used SVM method to detect P300 signal. Before training a classification parameter for the SVM, several preprocessing operations were applied to the data including filtering, downsampling, single tria...In this paper, we used SVM method to detect P300 signal. Before training a classification parameter for the SVM, several preprocessing operations were applied to the data including filtering, downsampling, single trial extraction, windsorizing, electrode selection et al. With the SVM algorithm, the classification accuracy could be up to above 80%. In some cases, the accuracy could reach 100%. It is suitable to use SVM for P300 EEG recognition in the P300-based brain-computer interface (BCI) system. Our further work will include the improvement to yield higher classification accuracy using fewer trials.展开更多
Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented ...Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented in this paper. It applies the recognition rate of training samples to the learning progress of network parameters. The learning vector quantization is employed to group training samples and the Genetic algorithm (GA) is used for training the network' s smoothing parameters and hidden central vector for detemlining hidden neurons. Utilizing the standard dataset I (a) of BCI Competition 2003 and comparing with other classification methods, the experiment results show that the best performance of pattern recognition Js got in this way, and the classification accuracy can reach to 93.8%, which improves over 5% compared with the best result (88.7 % ) of the competition. This technology provides an effective way to EEG classification in practical system of BCI.展开更多
A novel method based on machine learning is developed to estimate event-related potentials from single trial electroencephalography. This paper builds a basic framework using classification and an optimization model b...A novel method based on machine learning is developed to estimate event-related potentials from single trial electroencephalography. This paper builds a basic framework using classification and an optimization model based on this framework for estimating event-related potentials. Then the SingleTrialEM algorithm is derived by introducing a logistic regression model, which could be obtained by training before SingleTrialEM is used, to instantiate the optimization model. The simulation tests demonstrate that the proposed method is correct and solid. The advantage of this method is verified by the comparison between this method and the Woody filter in simulation tests. Also, the cognitive test results are consistent with the conclusions of cognitive science.展开更多
文摘针对目前多分类运动想象脑电识别存在特征提取单一、分类准确率低等问题,提出一种多特征融合的四分类运动想象脑电识别方法来提高识别率。对预处理后的脑电信号分别使用希尔伯特-黄变换、一对多共空间模式、近似熵、模糊熵、样本熵提取结合时频—空域—非线性动力学的初始特征向量,用主成分分析降维,最后使用粒子群优化支持向量机分类。该算法通过对国际标准数据集BCI2005 Data set IIIa中的k3b受试者数据经MATLAB仿真处理后获得93.30%的识别率,均高于单一特征和其它组合特征下的识别率。分别对四名实验者实验采集运动想象脑电数据,使用本研究提出的方法处理获得了72.96%的平均识别率。结果表明多特征融合的特征提取方法能更好的表征运动想象脑电信号,使用粒子群支持向量机可取得较高的识别准确率,为人脑的认知活动提供了一种新的识别方法。
文摘In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in an EEG-based brain-computer interface (BCI) was studied. An auto search algorithm was developed to study four datasegment-related parameters in each trial of 12 subjects’ EEG. The length of data segment (LDS), the start position of data (SPD) segment, AR order, and number of trials (NT) were used to build the model. The study showed that, compared with the classification ratio (CR) without parameter selection, the CR was increased by 20% to 30% with proper selection of these data-segment-related parameters, and the optimum parameter values were subject-dependent. This suggests that the data-segment-related parameters should be individualized when building models for BCI.
基金Projects(61201302,61372023,61671197)supported by the National Natural Science Foundation of ChinaProject(201308330297)supported by the State Scholarship Fund of ChinaProject(LY15F010009)supported by Zhejiang Provincial Natural Science Foundation,China
文摘Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets.
基金supported by the Shanghai Education Commission Foundation for Excellent Young High Education Teacher(No.sdj08001)
文摘In the study of brain-computer interfaces,a method of feature extraction and classification used fortwo kinds of imaginations is proposed.It considers Euclidean distance between mean traces recorded fromthe channels with two kinds of imaginations as a feature,and determines imagination classes using thresh-old value.It analyzed the background of experiment and theoretical foundation referring to the data sets ofBCI 2003,and compared the classification precision with the best result of the competition.The resultshows that the method has a high precision and is advantageous for being applied to practical systems.
基金Supported by National Natural Science Foundation of China(No.51007063)
文摘In order to classify the alertness status, 19 channels of electroencephalogram(EEG) signals from 5 subjects were acquired during daytime nap. Ten different types of features(including time domain features, frequency domain features and nonlinear features) were extracted from EEG signals, and an improved self-organizing map(ISOM) neuron network was proposed, which successfully identify three different brain status of the subjects: awareness, drowsiness and sleep. Compared with traditional SOM, the experiment results show that the ISOM generates much better classification accuracy, reaching as high as 89.59%.
基金Natural Science Foundation of Shandong Provincegrant number:Y2007G31
文摘In this paper, we used SVM method to detect P300 signal. Before training a classification parameter for the SVM, several preprocessing operations were applied to the data including filtering, downsampling, single trial extraction, windsorizing, electrode selection et al. With the SVM algorithm, the classification accuracy could be up to above 80%. In some cases, the accuracy could reach 100%. It is suitable to use SVM for P300 EEG recognition in the P300-based brain-computer interface (BCI) system. Our further work will include the improvement to yield higher classification accuracy using fewer trials.
基金Supported by the National Natural Science Foundation of China (No. 30570485)the Shanghai "Chen Guang" Project (No. 09CG69).
文摘Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented in this paper. It applies the recognition rate of training samples to the learning progress of network parameters. The learning vector quantization is employed to group training samples and the Genetic algorithm (GA) is used for training the network' s smoothing parameters and hidden central vector for detemlining hidden neurons. Utilizing the standard dataset I (a) of BCI Competition 2003 and comparing with other classification methods, the experiment results show that the best performance of pattern recognition Js got in this way, and the classification accuracy can reach to 93.8%, which improves over 5% compared with the best result (88.7 % ) of the competition. This technology provides an effective way to EEG classification in practical system of BCI.
基金supported by the National Natural Science Foundation of China (Grant No. 30670669)National Basic Research Program of China (Grant No. 2007CB947703)+1 种基金Natural Science Foundation of Fujian Province (Grant No. 2011J01344)Science and Technology Development Foundation of Fuzhou University (Grant No. 2009-XQ-25)
文摘A novel method based on machine learning is developed to estimate event-related potentials from single trial electroencephalography. This paper builds a basic framework using classification and an optimization model based on this framework for estimating event-related potentials. Then the SingleTrialEM algorithm is derived by introducing a logistic regression model, which could be obtained by training before SingleTrialEM is used, to instantiate the optimization model. The simulation tests demonstrate that the proposed method is correct and solid. The advantage of this method is verified by the comparison between this method and the Woody filter in simulation tests. Also, the cognitive test results are consistent with the conclusions of cognitive science.