期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于最小p-范数的宽度学习系统 被引量:13
1
作者 郑云飞 陈霸东 《模式识别与人工智能》 EI CSCD 北大核心 2019年第1期51-57,共7页
在宽度学习系统的基础上,以误差矢量的p-范数为损失函数,结合固定点迭代策略,提出基于最小p-范数的宽度学习系统.通过灵活设置p的取值(p≥1),提出的最小p-范数宽度学习系统能较好应对不同噪声的干扰,实现对不确定数据的建模任务.数值实... 在宽度学习系统的基础上,以误差矢量的p-范数为损失函数,结合固定点迭代策略,提出基于最小p-范数的宽度学习系统.通过灵活设置p的取值(p≥1),提出的最小p-范数宽度学习系统能较好应对不同噪声的干扰,实现对不确定数据的建模任务.数值实验表明,在高斯、均匀、脉冲噪声干扰环境下,文中系统均能保持良好性能.将该系统应用于脑电图分类任务,在大多数被试上都能取得较高的分类精度. 展开更多
关键词 宽度学习系统 最小p-范数 固定点迭代 脑电图分类
下载PDF
Individualization of Data-Segment-Related Parameters for Improvement of EEG Signal Classification in Brain-Computer Interface 被引量:1
2
作者 曹红宝 BESIO Walter G +1 位作者 JONES Steven 周鹏 《Transactions of Tianjin University》 EI CAS 2010年第3期235-238,共4页
In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in... In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in an EEG-based brain-computer interface (BCI) was studied. An auto search algorithm was developed to study four datasegment-related parameters in each trial of 12 subjects’ EEG. The length of data segment (LDS), the start position of data (SPD) segment, AR order, and number of trials (NT) were used to build the model. The study showed that, compared with the classification ratio (CR) without parameter selection, the CR was increased by 20% to 30% with proper selection of these data-segment-related parameters, and the optimum parameter values were subject-dependent. This suggests that the data-segment-related parameters should be individualized when building models for BCI. 展开更多
关键词 data segment parameter selection EEG classification brain-computer interface (BCI)
下载PDF
Noise-assisted MEMD based relevant IMFs identification and EEG classification 被引量:5
3
作者 SHE Qing-shan MA Yu-liang +2 位作者 MENG Ming XI Xu-gang LUO Zhi-zeng 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期599-608,共10页
Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provi... Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets. 展开更多
关键词 multichannel electroencephalography noise-assisted multivariate empirical mode decomposition Jensen-Shannondistance brain-computer interface
下载PDF
An efficient approach of EEG feature extraction and classification for brain computer interface
4
作者 吴婷 Yan Guozheng Yang Banghua 《High Technology Letters》 EI CAS 2009年第3期277-280,共4页
In the study of brain-computer interfaces,a method of feature extraction and classification used fortwo kinds of imaginations is proposed.It considers Euclidean distance between mean traces recorded fromthe channels w... In the study of brain-computer interfaces,a method of feature extraction and classification used fortwo kinds of imaginations is proposed.It considers Euclidean distance between mean traces recorded fromthe channels with two kinds of imaginations as a feature,and determines imagination classes using thresh-old value.It analyzed the background of experiment and theoretical foundation referring to the data sets ofBCI 2003,and compared the classification precision with the best result of the competition.The resultshows that the method has a high precision and is advantageous for being applied to practical systems. 展开更多
关键词 brain computer interface ELECTROENCEPHALOGRAM feather extraction Euclid distance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部