期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
N200脑电成分与中文词汇加工研究
1
作者 周海波 《当代教育理论与实践》 2016年第12期58-60,共3页
近来,电生理学研究发现了与中文视觉词汇加工相关的N200,刺激重复呈现时出现N200波幅增强的现象,并且与词汇词形加工相关。文章基于N200的已有研究,综合分析了N200波形识别、常用实验范式、刺激属性因素对N200的影响以及N200所反映的语... 近来,电生理学研究发现了与中文视觉词汇加工相关的N200,刺激重复呈现时出现N200波幅增强的现象,并且与词汇词形加工相关。文章基于N200的已有研究,综合分析了N200波形识别、常用实验范式、刺激属性因素对N200的影响以及N200所反映的语言加工机制等,并对N200的未来发展趋势做出了相关的探讨。 展开更多
关键词 N200 脑电成分 中文词汇 加工
下载PDF
睡眠脑电成分对慢性意识障碍患者评估及预后预判的研究 被引量:3
2
作者 夏晴 杨艺 +10 位作者 强峻 曾春 王勇 夏小雨 党圆圆 路长宇 李凯 孔德生 何江弘 赵元立 刘献增 《中华神经创伤外科电子杂志》 2020年第6期368-372,共5页
目的通过监测意识障碍(DOC)患者的脑电,分析患者治疗前后脑电背景活动及其特征性波形,比较不同意识水平以及不同预后患者在脑电成分上的差异,探寻DOC患者的脑电活动规律和睡眠期脑电活动的特征。方法收集自2020年1月至4月北京大学国际... 目的通过监测意识障碍(DOC)患者的脑电,分析患者治疗前后脑电背景活动及其特征性波形,比较不同意识水平以及不同预后患者在脑电成分上的差异,探寻DOC患者的脑电活动规律和睡眠期脑电活动的特征。方法收集自2020年1月至4月北京大学国际医院神经外科收治的6例DOC患者,采集患者治疗前后的修订版昏迷恢复量表评分,以及16 h以上的长程视频脑电图监测,分析DOC患者的脑电活动特征、睡眠脑电周期及成分。结果不同意识水平的患者均有可能出现枕区α节律,健侧为优势侧,睁眼时均未被抑制;但意识水平好的患者更有可能出现枕区α节律,预后较好的患者更有可能出现睡眠纺锤波。结论DOC患者是否出现枕区α节律以及是否出现特征性的睡眠脑电成分对意识水平及预后具有一定的提示意义,睡眠脑电活动的周期性有待进一步研究,对DOC患者的临床治疗节律调节及睡眠意识相关性理解有一定的参考意义。 展开更多
关键词 意识障碍 睡眠 脑电成分 植物状态 微意识状态
原文传递
太极拳不同速度练习者的脑电比较 被引量:1
3
作者 李宁 《体育学刊》 CAS CSSCI 北大核心 2014年第3期137-139,共3页
为了揭示不同速度练习太极拳的脑电活动特点,对经严格训练和筛选的在太极拳的认知和练习特点无明显差异的6名被试者进行实验研究,结果表明:一次性的故意减慢太极拳练习的速度,不但不能增强,反而减弱太极拳练习过程原有的大脑皮层神经元... 为了揭示不同速度练习太极拳的脑电活动特点,对经严格训练和筛选的在太极拳的认知和练习特点无明显差异的6名被试者进行实验研究,结果表明:一次性的故意减慢太极拳练习的速度,不但不能增强,反而减弱太极拳练习过程原有的大脑皮层神经元同步化活动效果,降低太极拳练习的神经作用。同时,由于是一次性练习,没有练习效果的积累,加上练习时间不长,两种速度练习时的神经活动的变化,不能延续到练习后的闭眼静坐过程。 展开更多
关键词 运动生理学 脑电成分 练习速度 太极拳
下载PDF
Effect of heartbeat perception on heartbeat evoked potential waves 被引量:1
4
作者 袁辉 颜红梅 +2 位作者 许小刚 韩飞 晏青 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第6期357-362,共6页
Objective Early researches found that different heartbeat perceivers have different heartbeat evoked potential (HEP)waves.Two tasks were considered in our experiments to get more details about the differences betwee... Objective Early researches found that different heartbeat perceivers have different heartbeat evoked potential (HEP)waves.Two tasks were considered in our experiments to get more details about the differences between good and poor heartbeat perceivers at attention and resting state.Methods Thirty channels of electroencephalogram(EEG)were recorded in 22 subjects,who had been subdivided into good and poor heartbeat perceivers by mental tracking task. Principal component analysis(PCA)was applied to remove cardiac field artifact(CFA)from the HEP.Results(1)The good heart-beat perceivers showed difference between attention and resting state in the windows from 250 ms to 450 ms after R wave at C3 location and from 100 ms to 300 ms after R wave at C4 location;(2)The difference waveforms between good and poor heartbeat perceivers was a positive waveform at FZ from 220 ms to 340 ms after R wave,which was more significant in attention state.Conclusion Attention state had more effect on the HEPs of good heartbeat perceivers than that of poor heartbeat perceivers;and perception ability influenced HEPs more strongly in the attention state than in the resting state. 展开更多
关键词 heartbeat perception heartbeat evoked potential cardiac field artifact principal component analysis
下载PDF
Detection and Separation of Event-related Potentials from Multi-Artifacts Contaminated EEG by Means of Independent Component Analysis
5
作者 WANGRong-chang DUSi-dan GAODun-tang 《Chinese Journal of Biomedical Engineering(English Edition)》 2004年第4期152-161,共10页
Event-related potentials (ERP) is an important type of brain dynamics in human cognition research. However, ERP is often submerged by the spontaneous brain activity EEG, for its relatively tiny scale. Further more, th... Event-related potentials (ERP) is an important type of brain dynamics in human cognition research. However, ERP is often submerged by the spontaneous brain activity EEG, for its relatively tiny scale. Further more, the brain activities collected from scalp electrodes are often inevitably contaminated by several kinds of artifacts, such as blinks, eye movements, muscle noise and power line interference. A new approach to correct these disturbances is presented using independent component analysis (ICA). This technique can effectively detect and extract ERP components from the measured electrodes recordings even if they are heavily contaminated. The results compare favorably to those obtained by parametric modeling. Besides, auto-adaptive projection of decomposed results to ERP components was also given. Through experiments, ICA proves to be highly capable of ERP extraction and S/N ratio improving. 展开更多
关键词 ERP Independent Component Analysis (ICA) Blind Source Separation (BSS) ARX Modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部