期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
功能近红外光谱用于麻醉深度监测的研究进展 被引量:6
1
作者 洪文学 张仲鹏 +4 位作者 宋佳霖 李少雄 栾景民 陈宁 谭建强 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第11期2939-2945,共7页
术中麻醉深度监测是保证临床麻醉质量和安全的重要手段,关系着患者的生命安全。功能近红外光谱分析技术作为一种非侵入式的脑功能监测技术手段,能够实现客观可靠的脑神经活动实时监测和成像,十分适合于进行麻醉深度监测的相关研究。因... 术中麻醉深度监测是保证临床麻醉质量和安全的重要手段,关系着患者的生命安全。功能近红外光谱分析技术作为一种非侵入式的脑功能监测技术手段,能够实现客观可靠的脑神经活动实时监测和成像,十分适合于进行麻醉深度监测的相关研究。因此简要介绍了功能近红外光谱分析技术的基本原理和技术实现,综述了目前功能近红外光谱分析技术在麻醉深度监测相关领域的研究进展,指出了应用功能近红外光谱进行麻醉深度监测研究的可能途径,并阐述了亟待解决的重大问题和发展前景。 展开更多
关键词 功能近红外光谱分析技术 血液动力学反应 功能脑神经活动 麻醉深度监测 光谱分析算法
下载PDF
基底节区梗死伴失语患者局部脑血流变化分析 被引量:2
2
作者 崔勇 田晶 常红 《中国厂矿医学》 2005年第1期10-11,共2页
 目的 研究左侧基底节区梗死所致皮层下失语与局部脑血流(rCBF)变化的关系。方法 对 30例左侧基底节区梗死伴失语患者于发病时及 3周后行语言功能评定和单光子发射计算机断层显像 (SPECT)rCBF检查,并进行视觉分析和半定量分析,结果...  目的 研究左侧基底节区梗死所致皮层下失语与局部脑血流(rCBF)变化的关系。方法 对 30例左侧基底节区梗死伴失语患者于发病时及 3周后行语言功能评定和单光子发射计算机断层显像 (SPECT)rCBF检查,并进行视觉分析和半定量分析,结果与同期左侧基底节区梗死不伴失语患者进行比较。结果 ①发病时皮层下rCBF的下降在失语组明显低于非失语组;②运动性失语组在额叶Broca区缺血明显,感觉性失语组则在颞叶Wernicke区rCBF最低;③失语伴随皮层缺血的改善而好转,皮层下失语与皮层的rBCF的动态变化有显著相关性。结论 大脑皮层语言中枢的rCBF下降与皮层下失语密切相关,可通过有效地改善左侧基底节区梗死患者皮层的rCBF,改善皮层下失语的预后。 展开更多
关键词 单光子发射计算机断层脑显像 左侧基底节区梗死 失语 电子计算机层扫描 脑血流量 脑神经功能活动
下载PDF
Systems Neuroengineering: Understanding and Interacting with the Brain 被引量:3
3
作者 Bradley J.Edelman Nessa Johnson +3 位作者 Abbas Sohrabpour Shanbao Tong Nitish Thakor Bin He 《Engineering》 SCIE EI 2015年第3期292-308,共17页
In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate co... In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate coordination of many processes that can be attributed to a variety of brain regions. On the surface, many of these functions can appear to be controlled by specific anatomical structures; however, in reality, numerous dynamic networks within the brain contribute to its function through an interconnected web of neuronal and synaptic pathways. The brain, in its healthy or pathological state, can therefore be best understood by taking a systems-level approach. While numerous neuroengineering technologies exist, we focus here on three major thrusts in the field of systems neuroengineering: neuroimaging, neural interfacing, and neuromodulation. Neuroimaging enables us to delineate the structural and functional organization of the brain, which is key in understanding how the neural system functions in both normal and disease states. Based on such knowledge, devices can be used either to communicate with the neural system, as in neural interface systems, or to modulate brain activity, as in neuromodulation systems. The consideration of these three fields is key to the development and application of neuro-devices. Feedback-based neuro-devices require the ability to sense neural activity (via a neuroimaging modality) through a neural interface (invasive or noninvasive) and ultimately to select a set of stimulation parameters in order to alter neural function via a neuromodulation modality. Systems neuroengineering refers to the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction. Interactions between these fields will help to shape the future of systems neuroengineering--to develop neurotechniques for enhancing the understanding of whole- brain function and dysfunction, and the management of neurological and mental disorders. 展开更多
关键词 systems neuroengineering NEUROIMAGING neural interface NEUROMODULATION NEUROTECHNOLOGY brain-computer interface brain-machine interface neural stimulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部