OBJECTIVE To explore the potential neurotrophic effect of bone marrow stromal cells (BMSCs) on cell proliferation and committed neuronal differentiation of ventral mesencephalic precursors (VMPs) in vitro. METHODS...OBJECTIVE To explore the potential neurotrophic effect of bone marrow stromal cells (BMSCs) on cell proliferation and committed neuronal differentiation of ventral mesencephalic precursors (VMPs) in vitro. METHODS Ventral mesencephalic precursors from Ell inbred rat embryos and BMSCs from adult rats were cultured both separately and in co-culture. After a 7-day incubation in vitro, three conditioned culture media were obtained, termed VMP or common medium, BMSC medium, and BMSC±VMP medium. Ventral mesen- cephalic precursors cells were cultured in each of these media and the effects on proliferation and VMP differentiation were assessed. The relative yield of TH± cells was calculated and compared by immunocytochemical staining. RESULTS After a 7-day culture and induction of VMPs, the total cell counts were increased by (44.13±4.75)-fold (common), (60.63±5.25)-fold (BMSC), and (64.00±7.63)-fold (BMSC±VMP). The proportions of TH+ cells were (18.76±5.20)%, (23.49±4.10)%, and (28.08± 5.42)%, respectively, with statistically significant differences among the treatment groups. CONCLUSION BMSCs release factors that promote the proliferation of VMPs and facilitate the committed differentiation of VMPs into dopaminergic neurons.展开更多
The current study was designed to investigate the mechanisms by which ropivacaine may act within the central nervous system (CNS) to produce cardiotoxicity. Eighty New Zealand rabbits were divided into four groups r...The current study was designed to investigate the mechanisms by which ropivacaine may act within the central nervous system (CNS) to produce cardiotoxicity. Eighty New Zealand rabbits were divided into four groups randomly. In Group 1,20 rabbits received intracerebroventricular (icv) saline, and then received icv ropivacaine 30 min later. In Group 2, 20 rabbits received icv ropivacaine. Whenever dysrhythmias continued for more than 5 min, 0.1 ml saline was administered into the left cerebral ventricle. Ten minutes later, 0.1 ml midazolam was given into the left lateral ventricle. In Group 3, 20 rabbits received icv ropivacaine, and once the dysrhythmias developed, the inspired isoflurane concentration was increased from 0.75% to 1.50%. In Group 4, 20 animals received an intravenous (iv) phenylephrine infusion until dysrhythmias occurred. In Group 1, the rabbits did not develop dysrhythmias in response to icv saline, whereas dysrhythmias did develop in these animals after icv ropivacaine. In Group 2, icv saline had no effect on the dysrhythmias; however, icv midazolam terminated cardiac dysrhythmias. In Group 3, an increase in the concentration of the inspired isoflurane had no effect on dysrhythmias. In Group 4, icv midazolam had no effect on dysrhythmias in response to iv phenylephdne. Ropivacaine administered directly into the CNS is capable of producing cardiac dysrhythmias; midazolam terminated dysrhythmias presumably by potentiation of y-aminobutyric acid (GABA) receptor activity. Our results suggest that ropivacaine produces some of its cardiotoxicity not only by the direct cardiotoxicity of the drug, but also by the CNS effects of ropivacaine.展开更多
基金This work was supported by grants from Natural Science Foundation of Jiangsu Province (No.BK2004043)
文摘OBJECTIVE To explore the potential neurotrophic effect of bone marrow stromal cells (BMSCs) on cell proliferation and committed neuronal differentiation of ventral mesencephalic precursors (VMPs) in vitro. METHODS Ventral mesencephalic precursors from Ell inbred rat embryos and BMSCs from adult rats were cultured both separately and in co-culture. After a 7-day incubation in vitro, three conditioned culture media were obtained, termed VMP or common medium, BMSC medium, and BMSC±VMP medium. Ventral mesen- cephalic precursors cells were cultured in each of these media and the effects on proliferation and VMP differentiation were assessed. The relative yield of TH± cells was calculated and compared by immunocytochemical staining. RESULTS After a 7-day culture and induction of VMPs, the total cell counts were increased by (44.13±4.75)-fold (common), (60.63±5.25)-fold (BMSC), and (64.00±7.63)-fold (BMSC±VMP). The proportions of TH+ cells were (18.76±5.20)%, (23.49±4.10)%, and (28.08± 5.42)%, respectively, with statistically significant differences among the treatment groups. CONCLUSION BMSCs release factors that promote the proliferation of VMPs and facilitate the committed differentiation of VMPs into dopaminergic neurons.
基金Project (No. 2006K13-G7-4) supported by the Key Sci-Tech Research Project of Shaanxi Province,China
文摘The current study was designed to investigate the mechanisms by which ropivacaine may act within the central nervous system (CNS) to produce cardiotoxicity. Eighty New Zealand rabbits were divided into four groups randomly. In Group 1,20 rabbits received intracerebroventricular (icv) saline, and then received icv ropivacaine 30 min later. In Group 2, 20 rabbits received icv ropivacaine. Whenever dysrhythmias continued for more than 5 min, 0.1 ml saline was administered into the left cerebral ventricle. Ten minutes later, 0.1 ml midazolam was given into the left lateral ventricle. In Group 3, 20 rabbits received icv ropivacaine, and once the dysrhythmias developed, the inspired isoflurane concentration was increased from 0.75% to 1.50%. In Group 4, 20 animals received an intravenous (iv) phenylephrine infusion until dysrhythmias occurred. In Group 1, the rabbits did not develop dysrhythmias in response to icv saline, whereas dysrhythmias did develop in these animals after icv ropivacaine. In Group 2, icv saline had no effect on the dysrhythmias; however, icv midazolam terminated cardiac dysrhythmias. In Group 3, an increase in the concentration of the inspired isoflurane had no effect on dysrhythmias. In Group 4, icv midazolam had no effect on dysrhythmias in response to iv phenylephdne. Ropivacaine administered directly into the CNS is capable of producing cardiac dysrhythmias; midazolam terminated dysrhythmias presumably by potentiation of y-aminobutyric acid (GABA) receptor activity. Our results suggest that ropivacaine produces some of its cardiotoxicity not only by the direct cardiotoxicity of the drug, but also by the CNS effects of ropivacaine.