期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
磁共振薄层扫描结合人工智能脑结构分割技术分析海马体积辅助诊断脑小血管病认知功能障碍
1
作者
王含春
汪群芳
罗长国
《全科医学临床与教育》
2024年第3期208-211,F0002,共5页
目的分析磁共振薄层扫描结合人工智能脑结构分割技术分析海马体积辅助诊断脑小血管病认知功能障碍的应用价值。方法选择确诊为脑小血管病患者84例,入院采用简易智力状态检查量表(MMSE)分为认知功能障碍组39例和正常组45例。采用1.43T磁...
目的分析磁共振薄层扫描结合人工智能脑结构分割技术分析海马体积辅助诊断脑小血管病认知功能障碍的应用价值。方法选择确诊为脑小血管病患者84例,入院采用简易智力状态检查量表(MMSE)分为认知功能障碍组39例和正常组45例。采用1.43T磁共振薄层扫描结合人工智能脑结构分割技术分析内侧颞叶区和海马的体积绝对值及百分比。结果认知功能障碍组年龄大于正常组(t=8.63,P<0.05),内侧颞叶区和海马的体积绝对值及百分比明显低于正常组(t分别=5.86、5.00、6.03、9.63,P均<0.05),而内侧颞叶萎缩视觉(MTA)评分明显高于正常组(t=-4.75,P<0.05)。相关性分析显示,内侧颞叶区和海马的体积绝对值及百分比与MTA评分呈负相关(r分别=-0.46、-0.50、-0.60、-0.63,P均<0.05),与MMSE评分呈正相关(r分别=0.41、0.49、0.57、0.60,P均<0.05)。受试者工作特征曲线(ROC)显示,海马体积百分比预测认知功能障碍的曲线下面积为0.88,95%CI 0.82~0.90,最佳临界值为0.31%,即海马体积百分比<0.31%诊断认知功能障碍的灵敏度为80.53%,特异度为85.62%。结论磁共振薄层扫描结合人工智能脑结构分割技术能够精准定位脑功能亚区,通过准确测量海马体积能够辅助诊断脑小血管病的认知功能障碍,海马体积百分比<0.31%有较好的诊断性能。
展开更多
关键词
磁共振
人工智能
脑结构分割
技术
海马
脑
小血管病
认知功能障碍
内侧颞叶萎缩视觉
下载PDF
职称材料
基于线性化核标签融合的脑MR图像分割方法
被引量:
1
2
作者
刘悦
魏颖
+1 位作者
贾晓甜
王楚媛
《自动化学报》
EI
CSCD
北大核心
2020年第12期2593-2606,共14页
深层脑结构的形态变化和神经退行性疾病相关,对脑MR图像中的深层脑结构分割有助于分析各结构的形态变化.多图谱融合方法利用图谱图像中的先验信息,为脑结构分割提供了一种有效的方法.大部分现有多图谱融合方法仅以灰度值作为特征,然而...
深层脑结构的形态变化和神经退行性疾病相关,对脑MR图像中的深层脑结构分割有助于分析各结构的形态变化.多图谱融合方法利用图谱图像中的先验信息,为脑结构分割提供了一种有效的方法.大部分现有多图谱融合方法仅以灰度值作为特征,然而深层脑结构灰度分布之间重叠的部分较多,且边缘不明显.为克服上述问题,本文提出一种基于线性化核多图谱融合的脑MR图像分割方法.首先,结合纹理与灰度双重特征,形成增强特征用于更好地表达脑结构信息.其次,引入核方法,通过高维映射捕获原始空间中特征的非线性结构,增强数据间的判别性和线性相似性.最后,利用Nystrom方法,对高维核矩阵进行估计,通过特征值分解计算虚样本,并在核标签融合过程中利用虚样本替代高维样本,大大降低了核标签融合的计算复杂度.在三个公开数据集上的实验结果表明,本文方法在较少的时间消耗内,提高了分割精度.
展开更多
关键词
脑结构分割
核标签融合
增强特征
Nystrom
方法
虚样本
下载PDF
职称材料
题名
磁共振薄层扫描结合人工智能脑结构分割技术分析海马体积辅助诊断脑小血管病认知功能障碍
1
作者
王含春
汪群芳
罗长国
机构
金华市第二医院放射科
金华市第二医院老年科
出处
《全科医学临床与教育》
2024年第3期208-211,F0002,共5页
基金
金华市科技局计划项目(2023-4-152)。
文摘
目的分析磁共振薄层扫描结合人工智能脑结构分割技术分析海马体积辅助诊断脑小血管病认知功能障碍的应用价值。方法选择确诊为脑小血管病患者84例,入院采用简易智力状态检查量表(MMSE)分为认知功能障碍组39例和正常组45例。采用1.43T磁共振薄层扫描结合人工智能脑结构分割技术分析内侧颞叶区和海马的体积绝对值及百分比。结果认知功能障碍组年龄大于正常组(t=8.63,P<0.05),内侧颞叶区和海马的体积绝对值及百分比明显低于正常组(t分别=5.86、5.00、6.03、9.63,P均<0.05),而内侧颞叶萎缩视觉(MTA)评分明显高于正常组(t=-4.75,P<0.05)。相关性分析显示,内侧颞叶区和海马的体积绝对值及百分比与MTA评分呈负相关(r分别=-0.46、-0.50、-0.60、-0.63,P均<0.05),与MMSE评分呈正相关(r分别=0.41、0.49、0.57、0.60,P均<0.05)。受试者工作特征曲线(ROC)显示,海马体积百分比预测认知功能障碍的曲线下面积为0.88,95%CI 0.82~0.90,最佳临界值为0.31%,即海马体积百分比<0.31%诊断认知功能障碍的灵敏度为80.53%,特异度为85.62%。结论磁共振薄层扫描结合人工智能脑结构分割技术能够精准定位脑功能亚区,通过准确测量海马体积能够辅助诊断脑小血管病的认知功能障碍,海马体积百分比<0.31%有较好的诊断性能。
关键词
磁共振
人工智能
脑结构分割
技术
海马
脑
小血管病
认知功能障碍
内侧颞叶萎缩视觉
Keywords
magnetic resonance imaging
artificial intelligence brain structure segmentation technology
hippocam-pus
cerebral small vessel disease
cognitive dysfunction
medial temporal lobe atrophy
分类号
R445.2 [医药卫生—影像医学与核医学]
R749.13 [医药卫生—神经病学与精神病学]
下载PDF
职称材料
题名
基于线性化核标签融合的脑MR图像分割方法
被引量:
1
2
作者
刘悦
魏颖
贾晓甜
王楚媛
机构
东北大学信息科学与工程学院
东北大学医学影像计算教育部重点实验室
出处
《自动化学报》
EI
CSCD
北大核心
2020年第12期2593-2606,共14页
基金
国家自然科学基金(61871106)资助。
文摘
深层脑结构的形态变化和神经退行性疾病相关,对脑MR图像中的深层脑结构分割有助于分析各结构的形态变化.多图谱融合方法利用图谱图像中的先验信息,为脑结构分割提供了一种有效的方法.大部分现有多图谱融合方法仅以灰度值作为特征,然而深层脑结构灰度分布之间重叠的部分较多,且边缘不明显.为克服上述问题,本文提出一种基于线性化核多图谱融合的脑MR图像分割方法.首先,结合纹理与灰度双重特征,形成增强特征用于更好地表达脑结构信息.其次,引入核方法,通过高维映射捕获原始空间中特征的非线性结构,增强数据间的判别性和线性相似性.最后,利用Nystrom方法,对高维核矩阵进行估计,通过特征值分解计算虚样本,并在核标签融合过程中利用虚样本替代高维样本,大大降低了核标签融合的计算复杂度.在三个公开数据集上的实验结果表明,本文方法在较少的时间消耗内,提高了分割精度.
关键词
脑结构分割
核标签融合
增强特征
Nystrom
方法
虚样本
Keywords
Subcortical brain segmentation
kernel-based label fusion method
augmented feature
Nystrom method
virtual sample
分类号
R445.2 [医药卫生—影像医学与核医学]
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
磁共振薄层扫描结合人工智能脑结构分割技术分析海马体积辅助诊断脑小血管病认知功能障碍
王含春
汪群芳
罗长国
《全科医学临床与教育》
2024
0
下载PDF
职称材料
2
基于线性化核标签融合的脑MR图像分割方法
刘悦
魏颖
贾晓甜
王楚媛
《自动化学报》
EI
CSCD
北大核心
2020
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部