Objective To investigate the effect of graded hypothermia on neuropathologic alterations of neonatal rat brain after exposed to hypoxic-ischemic insult at 37℃, 33℃, 31℃, and 28℃, respectively, and to observe the e...Objective To investigate the effect of graded hypothermia on neuropathologic alterations of neonatal rat brain after exposed to hypoxic-ischemic insult at 37℃, 33℃, 31℃, and 28℃, respectively, and to observe the effect of hypothermia on 72-kDa heat shock protein (HSP72) expression after hypoxic-ischemic insult. Methods Seven days old Wistar rats were subjected to unilateral common carotid artery ligation followed by exposure to hypoxia in 8% oxygen for 2 hours at 37℃, 33℃, 31℃, and 28℃, respectively. The brain temperature was monitored indirectly by inserting a mini-thermocouple probe into the temporal muscle during hypoxia. After hypoxia-ischemia their mortality was assessed. Neuronal damage was assessed with HE staining 72 hours after hypoxia. HSP72 expression at 0.5, 24, and 72 hours of recovery was immunohistochemically assessed using a monoclonal antibody to HSP72. Results Hypoxia-ischemia caused 10.5% (2 / 19) of mortality in rat of 37℃ group, but no death oc- curred in 33℃, 31℃ or 28℃ groups. HE staining showed neuropathologic damage was extensive in rats exposed to hypoxia-ischemia at 37℃ (more than 80.0%). The incidence of severe brain damage was significantly decreased in 33℃ (53.3%) and 31℃ groups (44,4%), and no histologic injury was seen in the 28℃ group of rats. Expression of HSP72 was manifest and persistent in the rat brain of 37℃ group, but minimum in the rat brain of 28℃ group. Conclusion Mild and moderate hypothermia might prevent cerebral visible neuropathologic damage associated with hypoxic-ischemic injury by decreasing stress response.展开更多
Perinatal hypoxia-ischemia remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Because of the fact that there is still no specific treatment for perinatal bra...Perinatal hypoxia-ischemia remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Because of the fact that there is still no specific treatment for perinatal brain lesions due to the complexity of neonatal hypoxic-ischemic pathophysiology, the search of new neuroprotective therapies is of great interest. In this regard, therapeutic possibilities of the endocannabinoid system have grown lately. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. Concerning perinatal asphyxia, the neuroprotective role of this endogenous system is emerging these years. The present review mainly focused on the current knowledge of the cannabinoids as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.展开更多
文摘Objective To investigate the effect of graded hypothermia on neuropathologic alterations of neonatal rat brain after exposed to hypoxic-ischemic insult at 37℃, 33℃, 31℃, and 28℃, respectively, and to observe the effect of hypothermia on 72-kDa heat shock protein (HSP72) expression after hypoxic-ischemic insult. Methods Seven days old Wistar rats were subjected to unilateral common carotid artery ligation followed by exposure to hypoxia in 8% oxygen for 2 hours at 37℃, 33℃, 31℃, and 28℃, respectively. The brain temperature was monitored indirectly by inserting a mini-thermocouple probe into the temporal muscle during hypoxia. After hypoxia-ischemia their mortality was assessed. Neuronal damage was assessed with HE staining 72 hours after hypoxia. HSP72 expression at 0.5, 24, and 72 hours of recovery was immunohistochemically assessed using a monoclonal antibody to HSP72. Results Hypoxia-ischemia caused 10.5% (2 / 19) of mortality in rat of 37℃ group, but no death oc- curred in 33℃, 31℃ or 28℃ groups. HE staining showed neuropathologic damage was extensive in rats exposed to hypoxia-ischemia at 37℃ (more than 80.0%). The incidence of severe brain damage was significantly decreased in 33℃ (53.3%) and 31℃ groups (44,4%), and no histologic injury was seen in the 28℃ group of rats. Expression of HSP72 was manifest and persistent in the rat brain of 37℃ group, but minimum in the rat brain of 28℃ group. Conclusion Mild and moderate hypothermia might prevent cerebral visible neuropathologic damage associated with hypoxic-ischemic injury by decreasing stress response.
基金supported by grants from Fondo de Investigación Sanitaria of Spanish Ministry of Health(PS09/02326)the Basque Government(GCI-07/79,IT-287-07)
文摘Perinatal hypoxia-ischemia remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Because of the fact that there is still no specific treatment for perinatal brain lesions due to the complexity of neonatal hypoxic-ischemic pathophysiology, the search of new neuroprotective therapies is of great interest. In this regard, therapeutic possibilities of the endocannabinoid system have grown lately. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. Concerning perinatal asphyxia, the neuroprotective role of this endogenous system is emerging these years. The present review mainly focused on the current knowledge of the cannabinoids as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.