One of the most important causes of brain injury in the neonatal period is a perinatal hypoxicischemic event.This devastating condition can lead to long-term neurological deficits or even death.After hypoxic-ischemic ...One of the most important causes of brain injury in the neonatal period is a perinatal hypoxicischemic event.This devastating condition can lead to long-term neurological deficits or even death.After hypoxic-ischemic brain injury,a variety of specific cellular mechanisms are set in motion,triggering cell damage and finally producing cell death.Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury.After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury,various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes.Among them,the endocannabinoid system emerges as a natural system of neuroprotection.The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury,acting as a natural neuroprotectant.The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury,and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.展开更多
Mongolian gerbils were used as delayed neuronal damage (DNDi animal models. At the end of 15Abstract:Mongolian gerbils were used as delayed neuronal damage (DND)animal models. At the end of 15 minute cerebral ischemi...Mongolian gerbils were used as delayed neuronal damage (DNDi animal models. At the end of 15Abstract:Mongolian gerbils were used as delayed neuronal damage (DND)animal models. At the end of 15 minute cerebral ischemia and at various reperfusion time ranging from 1 to 96 hours, the content of water and arginine vasopressin (AVP) in the CA1 sector of hippocampus were measured by the specific gravity method and radioimmunoassay. Furthermore, we also examined the effect of intracerebroventricular (ICV) injection of AVP, AVP antiserum on calcium, Na+, K+-ATPase activrty in the CA1 sector after ischemia and 96 hour reperfusion. The results showed that AVP contents of CA1 sector of hippocampus during 6 to 96 hour recirculation, and the water content of CA1 sector during 24 to 96 hour were significantly and continuously increased. After ICV inJection of AVP, the water content and calcium in CA1 sector of hippocampus at cerebral ischemia and 96 hour recirculation further increased, and the Na+, K+- ATPase activity in CA1 sector was remarkably decreased as compared with that of control. While ICV injection of AVP antiserum, the water content and calcium in CA1 sector were significantly decreased as com pared with that of control. These suggested that AVP was involved in the pathophysiologic process of DND in hippocampus following cerebral ischemia and reperfusion. Its mechanism might be through the change of intracellular action mediated by specific AVP receptor to lead to Ca ions over-load of neuron and inhibit the Na+, K+- ATPase activity , thereby to exacerbate the DND in hippocampus.展开更多
Objective To observe the effects of eye-acupuncture therapy and bodyacupuncture therapy on the expression of brain-deprived neurotrophic factor (BDNF) in rats with cerebral ischemia reperfusion injury (CIRI). Meth...Objective To observe the effects of eye-acupuncture therapy and bodyacupuncture therapy on the expression of brain-deprived neurotrophic factor (BDNF) in rats with cerebral ischemia reperfusion injury (CIRI). Methods According to random number table, 48 SD rats were randomly divided into 6 groups, including normal control group (group A), sham operation group (group B), model group (group C), eye-acupuncture group (group D), non-acupoint of eye-acupuncture group (group E) and body-acupuncture group (group F), eight rats in each group. Artery infarction reperfusion model were prepared by using suture-occluded method. Liver region, upper energizer area, lower energizer area and kidney region were selected in the group D. Acupuncture was carried out at the point located at 3 mm from the acupoint areas in the group E. Qūchí (曲池 LI 11), Zúsānl (足三里 ST 36) and other acupoints were selected in the group F. Zea Longa scoring method was utilized for scoring the neural functions of rats; real-time PCR was carried out to examine the expression level of BDNF mRNA in the brain 72 h after ischemia reperfusion; western blot was carried out to examine the expression level of BDNF protein in the brain 72 h after ischemia reperfusion. Results The symptoms of neurologic impairments in the rats of the group D were alleviated in comparison to those in the group C (P0.01), and the difference between the group D and the group F was not statistically significant (P0.05); Compared with the group C, the mRNA and protein expression levels of BDNF in the brain of rats in the group D and the group F both increased (P0.01), but the difference between the group D and the group F was not statistically significant (P0.05). Conclusion The functions of eye-acupuncture and body-acupuncture in improving cerebral ischemia reperfusion injury are similar, and the functional mechanisms for the two different therapies may be related to the up-regulation of BDNF expression in brain and thus promote the repairing of brain tissues.展开更多
基金supported by grants from Funding Health Care of Spanish Ministry of Health,No. PS09/ 02326from the Basque Government,No. GCI-07/79,IT-287-07
文摘One of the most important causes of brain injury in the neonatal period is a perinatal hypoxicischemic event.This devastating condition can lead to long-term neurological deficits or even death.After hypoxic-ischemic brain injury,a variety of specific cellular mechanisms are set in motion,triggering cell damage and finally producing cell death.Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury.After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury,various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes.Among them,the endocannabinoid system emerges as a natural system of neuroprotection.The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury,acting as a natural neuroprotectant.The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury,and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.
文摘Mongolian gerbils were used as delayed neuronal damage (DNDi animal models. At the end of 15Abstract:Mongolian gerbils were used as delayed neuronal damage (DND)animal models. At the end of 15 minute cerebral ischemia and at various reperfusion time ranging from 1 to 96 hours, the content of water and arginine vasopressin (AVP) in the CA1 sector of hippocampus were measured by the specific gravity method and radioimmunoassay. Furthermore, we also examined the effect of intracerebroventricular (ICV) injection of AVP, AVP antiserum on calcium, Na+, K+-ATPase activrty in the CA1 sector after ischemia and 96 hour reperfusion. The results showed that AVP contents of CA1 sector of hippocampus during 6 to 96 hour recirculation, and the water content of CA1 sector during 24 to 96 hour were significantly and continuously increased. After ICV inJection of AVP, the water content and calcium in CA1 sector of hippocampus at cerebral ischemia and 96 hour recirculation further increased, and the Na+, K+- ATPase activity in CA1 sector was remarkably decreased as compared with that of control. While ICV injection of AVP antiserum, the water content and calcium in CA1 sector were significantly decreased as com pared with that of control. These suggested that AVP was involved in the pathophysiologic process of DND in hippocampus following cerebral ischemia and reperfusion. Its mechanism might be through the change of intracellular action mediated by specific AVP receptor to lead to Ca ions over-load of neuron and inhibit the Na+, K+- ATPase activity , thereby to exacerbate the DND in hippocampus.
基金Supported by National Key Fundamental:Research and Development Project 2007 CB 512702A project of starting foundation for doctors in Liaoning Province:20131073
文摘Objective To observe the effects of eye-acupuncture therapy and bodyacupuncture therapy on the expression of brain-deprived neurotrophic factor (BDNF) in rats with cerebral ischemia reperfusion injury (CIRI). Methods According to random number table, 48 SD rats were randomly divided into 6 groups, including normal control group (group A), sham operation group (group B), model group (group C), eye-acupuncture group (group D), non-acupoint of eye-acupuncture group (group E) and body-acupuncture group (group F), eight rats in each group. Artery infarction reperfusion model were prepared by using suture-occluded method. Liver region, upper energizer area, lower energizer area and kidney region were selected in the group D. Acupuncture was carried out at the point located at 3 mm from the acupoint areas in the group E. Qūchí (曲池 LI 11), Zúsānl (足三里 ST 36) and other acupoints were selected in the group F. Zea Longa scoring method was utilized for scoring the neural functions of rats; real-time PCR was carried out to examine the expression level of BDNF mRNA in the brain 72 h after ischemia reperfusion; western blot was carried out to examine the expression level of BDNF protein in the brain 72 h after ischemia reperfusion. Results The symptoms of neurologic impairments in the rats of the group D were alleviated in comparison to those in the group C (P0.01), and the difference between the group D and the group F was not statistically significant (P0.05); Compared with the group C, the mRNA and protein expression levels of BDNF in the brain of rats in the group D and the group F both increased (P0.01), but the difference between the group D and the group F was not statistically significant (P0.05). Conclusion The functions of eye-acupuncture and body-acupuncture in improving cerebral ischemia reperfusion injury are similar, and the functional mechanisms for the two different therapies may be related to the up-regulation of BDNF expression in brain and thus promote the repairing of brain tissues.