针对现有脑部医学图像融合算法存在的融合图像细节模糊和边缘性差等问题,设计一种扩张金字塔特征提取算法,由特征提取器、特征融合器和特征重构器3部分组成。特征提取器由扩张金字塔特征模块提取浅层和深层图像特征的结合,防止图像细节...针对现有脑部医学图像融合算法存在的融合图像细节模糊和边缘性差等问题,设计一种扩张金字塔特征提取算法,由特征提取器、特征融合器和特征重构器3部分组成。特征提取器由扩张金字塔特征模块提取浅层和深层图像特征的结合,防止图像细节信息的丢失;特征融合器采用改进的功能能量比(Functional Energy Ratio,FER)特征融合策略增强融合图像边缘信息;特征重构器由4层卷积构成归一化图像。实验结果表明,相较于当前通用的脑部融合算法,所提出的算法具有较好的视觉效果和细节信息,客观评价指标有更好的表现。展开更多
文摘针对现有脑部医学图像融合算法存在的融合图像细节模糊和边缘性差等问题,设计一种扩张金字塔特征提取算法,由特征提取器、特征融合器和特征重构器3部分组成。特征提取器由扩张金字塔特征模块提取浅层和深层图像特征的结合,防止图像细节信息的丢失;特征融合器采用改进的功能能量比(Functional Energy Ratio,FER)特征融合策略增强融合图像边缘信息;特征重构器由4层卷积构成归一化图像。实验结果表明,相较于当前通用的脑部融合算法,所提出的算法具有较好的视觉效果和细节信息,客观评价指标有更好的表现。