Some variables that influence the slag splashing phenomenon in an oxygen steelmaking converter are numerically analyzed in this work. The effect of lance height, jet velocity, jet exit angle and slag viscosity on the ...Some variables that influence the slag splashing phenomenon in an oxygen steelmaking converter are numerically analyzed in this work. The effect of lance height, jet velocity, jet exit angle and slag viscosity on the washing and ejection mechanisms of slag splashing is studied employing transient two-dimensional computational fluid dynamics simulations. A parameter here called average slag volume fraction is proposed for the quantitative evaluation of the slag splashing efficiency. Besides, a qualitative comparison is made between the computational fluid dynamics results and physical model results from literature.展开更多
Although the FCC process has been used for more than halfa century, new and important developments continue to be made in several areas. Some of these new developments are a direct response to environmental regulation...Although the FCC process has been used for more than halfa century, new and important developments continue to be made in several areas. Some of these new developments are a direct response to environmental regulation. Sulfur oxides (SOx-SO2+SO3) emitted from fluid catalytic cracking units (FCCU) are one of the most hazardous atmospheric pollutants, which may cause serious environmental problems such as the formation of acid rain and the destruction of the ozone layer. Thus, great attention has been focused on the SOx removal from FCC in last few years. The present papers will focus on the spinel material studies include three samples they were prepared by acidic method, solid solution MgAl2O4, solid solution with cerium10%Ce/MgAl2O4, iron mixed spinel with cerium 10%Ce/MgAl2-xFeO4.MgO and two samples solid solution with cerium introduce by vanadium as second co-catalyst prepared by basic method, 1% V/10%Ce/MgAl2O4.MgO were tested in TGA for oxidation half cycle to study some parameters effect on performance of SOx additives in TGA under condition similar to those of FCC units. Thermogravimetry analysis experiments have been used to demonstrate the pick-up and release of sulfur oxides in the development of additives for SOx control in the FCCU.展开更多
文摘Some variables that influence the slag splashing phenomenon in an oxygen steelmaking converter are numerically analyzed in this work. The effect of lance height, jet velocity, jet exit angle and slag viscosity on the washing and ejection mechanisms of slag splashing is studied employing transient two-dimensional computational fluid dynamics simulations. A parameter here called average slag volume fraction is proposed for the quantitative evaluation of the slag splashing efficiency. Besides, a qualitative comparison is made between the computational fluid dynamics results and physical model results from literature.
文摘Although the FCC process has been used for more than halfa century, new and important developments continue to be made in several areas. Some of these new developments are a direct response to environmental regulation. Sulfur oxides (SOx-SO2+SO3) emitted from fluid catalytic cracking units (FCCU) are one of the most hazardous atmospheric pollutants, which may cause serious environmental problems such as the formation of acid rain and the destruction of the ozone layer. Thus, great attention has been focused on the SOx removal from FCC in last few years. The present papers will focus on the spinel material studies include three samples they were prepared by acidic method, solid solution MgAl2O4, solid solution with cerium10%Ce/MgAl2O4, iron mixed spinel with cerium 10%Ce/MgAl2-xFeO4.MgO and two samples solid solution with cerium introduce by vanadium as second co-catalyst prepared by basic method, 1% V/10%Ce/MgAl2O4.MgO were tested in TGA for oxidation half cycle to study some parameters effect on performance of SOx additives in TGA under condition similar to those of FCC units. Thermogravimetry analysis experiments have been used to demonstrate the pick-up and release of sulfur oxides in the development of additives for SOx control in the FCCU.