The vapor-liquid equilibrium data of four binary systems (acetic acid +p-xylene, methyl acetate +n-propyl acetate, n-propyl acetate +p-xylene and methyl acetate +p-xylene) are measured at 101.33 kPa with Ellis equilib...The vapor-liquid equilibrium data of four binary systems (acetic acid +p-xylene, methyl acetate +n-propyl acetate, n-propyl acetate +p-xylene and methyl acetate +p-xylene) are measured at 101.33 kPa with Ellis equilibrium still, and then both the NRTL and UNIQUAC models are used in combination with the HOC model for correlating and estimating the vapor-liquid equilibrium of these four binary systems. The estimated binary VLE results using correlated parameters agree well with the measured data except the methyl acetate +p-xylene system which easily causes bumping and liquid rushing out of the sampling tap due to their dramatically different boiling points. The correlation results by NRTL and UNIQUAC models have little difference on the average absolute deviations of temperature and composition of vapor phase, and the results by NRTL model are slightly better than those by UNIQUAC model except for the methyl acetate +n-propyl acetate system, for which the latter gives more accurate correlations.展开更多
According to the characteristics of FCC diesel, a technology of liquid-phase hydrodesulfurization of the diesel in tubular reactors was proposed and lab-scale experiments were carried out. A kinetic model for the hydr...According to the characteristics of FCC diesel, a technology of liquid-phase hydrodesulfurization of the diesel in tubular reactors was proposed and lab-scale experiments were carried out. A kinetic model for the hydrodesulfurization process was developed and verified. The model was utilized to predict the sulfur content of products under different operating conditions. The effects of temperature, space velocity, pressure, and hydrogen concentration on the dcsulfurization rate were investigated.展开更多
Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur...Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process.展开更多
基金Supported by the Major State Basic Research Development Program of China (2012CB720500), the National Natural Science Foundation of China (U1162202, 61174118) and the Shanghai Leading Academic Discipline Project (B504).
文摘The vapor-liquid equilibrium data of four binary systems (acetic acid +p-xylene, methyl acetate +n-propyl acetate, n-propyl acetate +p-xylene and methyl acetate +p-xylene) are measured at 101.33 kPa with Ellis equilibrium still, and then both the NRTL and UNIQUAC models are used in combination with the HOC model for correlating and estimating the vapor-liquid equilibrium of these four binary systems. The estimated binary VLE results using correlated parameters agree well with the measured data except the methyl acetate +p-xylene system which easily causes bumping and liquid rushing out of the sampling tap due to their dramatically different boiling points. The correlation results by NRTL and UNIQUAC models have little difference on the average absolute deviations of temperature and composition of vapor phase, and the results by NRTL model are slightly better than those by UNIQUAC model except for the methyl acetate +n-propyl acetate system, for which the latter gives more accurate correlations.
基金the financial support from the SINOPEC(No.2014310031600599)
文摘According to the characteristics of FCC diesel, a technology of liquid-phase hydrodesulfurization of the diesel in tubular reactors was proposed and lab-scale experiments were carried out. A kinetic model for the hydrodesulfurization process was developed and verified. The model was utilized to predict the sulfur content of products under different operating conditions. The effects of temperature, space velocity, pressure, and hydrogen concentration on the dcsulfurization rate were investigated.
文摘Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process.