期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
丙烷在负载型催化剂上脱氢反应的研究 Ⅴ.丙烷在PtSn/Al_2O_3催化剂上的脱氢反应模型 被引量:7
1
作者 杨维慎 吴荣安 林励吾 《Chinese Journal of Catalysis》 SCIE CAS CSCD 北大核心 1992年第3期161-166,共6页
应用原位Mossbauer谱等技术考察了PtSn/Al_2O_3催化剂中锡组分与丙烷的作用,研究了丙烷在该催化剂上的脱氢反应行为。提出了丙烷的脱氢反应模型,即负载型铂锡催化剂中的氧化态锡用于活化丙烷,而金属铂则通过反溢流过程移去活化了的丙烷... 应用原位Mossbauer谱等技术考察了PtSn/Al_2O_3催化剂中锡组分与丙烷的作用,研究了丙烷在该催化剂上的脱氢反应行为。提出了丙烷的脱氢反应模型,即负载型铂锡催化剂中的氧化态锡用于活化丙烷,而金属铂则通过反溢流过程移去活化了的丙烷中的氢,从而使丙烷催化脱氢过程得以循环进行。 展开更多
关键词 丙烷 脱氢模型 氧化铝
下载PDF
Hydrodeoxygenation of Phenolic Model Compounds over MoS2 Catalysts with Different Structures 被引量:18
2
作者 杨运泉 罗和安 +2 位作者 童刚生 Kevin J. Smith TYE Ching Thian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第5期733-739,共7页
Several MoS2 catalysts of different structure, prepared by in situ decomposition of ammonium heptamolybdate (AHM) and molybdenum naphthenate (MoNaph), and by MoS2 exfoliation (TDM), were characterized by BET, X-... Several MoS2 catalysts of different structure, prepared by in situ decomposition of ammonium heptamolybdate (AHM) and molybdenum naphthenate (MoNaph), and by MoS2 exfoliation (TDM), were characterized by BET, X-ray diffraction (XRD), Energy Dispersive X-ray (EDX) and transmission electron microscopy (TEM). The analysis showed that MoS2 structure was dependant upon the preparation procedure. The activity of the catalysts was determined by measuring the hydrodeoxygenation (HDO) of phenol, 4-methylphenol and 4-methoxyphenol using a batch autoclave reactor operated at 2.8 MPa of hydrogen and temperatures ranging from 320-370℃. By comparing the conversion, the reactivity order of the catalysts was: AHM〉TDM-D〉MoNaph〉thermal〉MoS2 powder〉 TDM-W. Also, the effect of reaction temperature on the HDO conversion was explained in terms of equilibrium of reversible reaction kinetics. The main products of the HDO for phenolic compounds were identified by gas chromatography/mass spectrometry (GC/MS). The results showed that the product distribution and the HDO selectivity were correlated with the reaction temperature. Two parallel reaction routes, direct hydrogenolysis and combined hydrogenation-hydrogenolysis, were confirmed by the analysis of the product distribution. High temperature favored hydrogenolysis over hydrogenation for HDO of phenol and 4-methoxyphenol, whereas for 4-methylphenol the reverse was true. 展开更多
关键词 ammonium heptamolybdate derived MoS2 structure effect characterization HYDRODEOXYGENATION REACTIVITY product distribution
下载PDF
Microwave-Assisted Decarboxylation of Sodium Oleate and Renewable Hydrocarbon Fuel Production 被引量:5
3
作者 Wang Yunpu Liu Yuhuan +3 位作者 Ruan Rongsheng Wen Pingwei Wan Yiqin Zhang Jinsheng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第3期19-27,共9页
The carboxyl terminal of sodium oleate has a stronger polarity than that of oleic acid;this terminal is more likely to be dipole polarized and ionically conductive in a microwave field.Sodium oleate was used as the mo... The carboxyl terminal of sodium oleate has a stronger polarity than that of oleic acid;this terminal is more likely to be dipole polarized and ionically conductive in a microwave field.Sodium oleate was used as the model compound to study the decarboxylation of oleic acid leading to hydrocarbon formation via microwave-assisted pyrolysis technology.The pyrolysis gas,liquid,and solid products were precisely analyzed to deduce the mechanism for decarboxylation of sodium oleate.Microwave energy was able to selectively heat the carboxyl terminal of sodium oleate.During decarboxylation,the double bond in the long hydrocarbon chain formed a p-πconjugated system with the carbanion intermediate.The resulting p-πconjugated system was more stable and beneficial to the pyrolysis reaction(decarboxylation,terminal allylation,isomerization,and aromatization).The physical properties of pyrolysis liquid were generally similar to those of diesel fuel,thereby demonstrating the possible use of microwaves for controlling the decarboxylation of sodium oleate in order to manufacture renewable hydrocarbon fuels. 展开更多
关键词 microwave radiation sodium oleate conjugated system DECARBOXYLATION HYDROCARBON
下载PDF
Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane 被引量:5
4
作者 Ali Darvishi Razieh Davand +1 位作者 Farhad Khorasheh Moslem Fattahi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第5期612-622,共11页
An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular re- actors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of small diame... An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular re- actors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of small diameter tubes immersed in a shell through a proper coolant flows. Herein, a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence olefln over V2O5/γ-Al203 catalyst was presented. Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions, gas process and coolant temperatures, as well as other pa- rameters affecting the reactor performance such as pressure. Furthermore, the applied model showed that a double-bed multitubular reactor with intermediate air injection scheme was superior to a single-bed design due to the increasing of propylene selectivity while operating under lower oxygen partial pressures resulting in propane conversion of about 37.3%. The optimized length of the reactor needed to reach 100% conversion of the oxygen was theoretically determined. For the single-bed reactor the optimized length of 11.96 m including 0.5 m of inert section at the entrance region and for the double-bed reactor design the optimized lengths of 5.72 m for the first and 7.32 m for the second reactor were calculated. Ultimately, the use of a distributed oxygen feed with limited number of injection points indicated a significant improvement on the reactor performance in terms of propane conversion and propylene selectivity. Besides, this concept could overcome the reactor run- away temperature problem and enabled operations at the wider range of conditions to obtain enhanced propyl- ene production in an industrial scale reactor. 展开更多
关键词 Fixed-bed reactor Mathematical modeling Oxidative dehydrogenation of propane PROPYLENE V2O5/γ-Al203 catalyst OPTIMIZATION
下载PDF
Study on Residual Oil HDS Process with Mechanism Model and ANN Model
5
作者 Ma Chengguo Weng Huixin (Research Center of Petroleum Processing, ECUST, Shanghai 200237) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第1期39-43,共5页
Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur... Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process. 展开更多
关键词 residual oil hydrodesulfurization (HDS) mechanism model artificial neural network (ANN) model
下载PDF
Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor 被引量:2
6
作者 Masoud Hasany Mohammad Malakootikhah +1 位作者 Vahid Rahmanian Soheila Yaghmaei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1316-1325,共10页
A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal... A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production.For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used.Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogenation method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and signi ficant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor. 展开更多
关键词 Catalytic membrane reactor Mathematical modeling Ethane dehydrogenation Hydrogen combustion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部