Two series of WP/Al2O3 catalyst precursors with WP mass loading in the range 18.5%—37.1% were prepared using the impregnation method and mixing method, respectively, and the catalysts were then obtained by temperatur...Two series of WP/Al2O3 catalyst precursors with WP mass loading in the range 18.5%—37.1% were prepared using the impregnation method and mixing method, respectively, and the catalysts were then obtained by temperature-programmed reduction of supported tungsten phosphate (precursor of WP/Al2O3 catatlysts) in H2 at 650℃ for 4h. The catalysts were characterized by XRD, BET, TG/DTA , XPS and 31P MAS-NMR. The activities of these catalysts were tested in the hydrodenitrogenation (HDN) of pyridine and hydrodesulfurization (HDS) of thiophene at 340℃ and 3.0MPa. The results showed that owing to the stronger interaction of the support with the active species, the precursor of WP/Al2O3 catalyst was more difficultly phosphided and a greater amount of W spe- cies was in a high valence state W6+ on the surface of the catalyst prepared by the impregnation method than that by the mixing method. 31P MAS-NMR results indicated that 31P shift from 85% H3PO4 of 2.55×10-4 for WP and 2.57 ×10-4 for WP/γ-Al2O3 catalysts prepared by mixing method. Such WP/Al2O3 catalysts showed higher HDN activi- ties and lower HDS activities than those prepared by the impregnation method under the same loading of WP. WP/γ-Al2O3 catalysts with weak interaction between support and active species were favorable for HDN reaction while the WP/γ-Al2O3 catalysts with strong interaction were favorable for HDS reaction.展开更多
The alumina-modified SBA-15 (A12OJSBA-15) zeolite was prepared in a non-aqueous system by using toluene as the solvent, and was used to support the PtSn-based catalyst for propane dehydrogenation. The BET surface ar...The alumina-modified SBA-15 (A12OJSBA-15) zeolite was prepared in a non-aqueous system by using toluene as the solvent, and was used to support the PtSn-based catalyst for propane dehydrogenation. The BET surface area mea- surements, hydrogen chemisorption, FT-IR spectroscopy, NH3-TPD, XPS and TPO techniques were used to characterize the catalysts. Test results showed that the addition of alumina not only could modify the acid function of the support but also the structure of the metallic phase, thus affecting their catalytic properties. Among these catalysts studied, the PtSn/AI203 (5%)/ SBA-15 catalyst exhibited a best catalytic performance in terms of propane conversion and selectivity to propene. The high catalytic performance might be attributed to the relatively good Pt metal dispersion and/or the strong interaction between Pt and Sn species.展开更多
PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydr...PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydrogen temperature-programmed reduction (H2-TPR), and temperature-programmed oxidation (TPO) techniques. The performances of these catalysts for propane dehydrogenation were investigated. The test results indicated that the addition of Ga not only could improve the catalytic stability and propene selectivity, but also could effectively prevent the catalysts from coking. It was found that the PtSnNaGa(0.5 m%)/ZSM-5 catalyst exhibited the best performance in terms of propene selectivity and propane conversion. The high catalytic performance was most probably attributed to the presence of Ga that could strength- en the interaction between metals and the support to stabilize the catalytic active sites.展开更多
A novel hydrido iridium chloride complex supported by a tetradentate PNCP ligand has been synthesized and characterized. Upon activation with NaOtBu, the PNCP-IrHC1 complex is active for transfer dehydrogenation of cy...A novel hydrido iridium chloride complex supported by a tetradentate PNCP ligand has been synthesized and characterized. Upon activation with NaOtBu, the PNCP-IrHC1 complex is active for transfer dehydrogenation of cyclic and linear alkanes.展开更多
基金Supported by the National Natural Science Foundation of China (No.200273011), the National 973 Project (No.G2000048003)and the Beijing Natural Science Foundation (No.2052009).
文摘Two series of WP/Al2O3 catalyst precursors with WP mass loading in the range 18.5%—37.1% were prepared using the impregnation method and mixing method, respectively, and the catalysts were then obtained by temperature-programmed reduction of supported tungsten phosphate (precursor of WP/Al2O3 catatlysts) in H2 at 650℃ for 4h. The catalysts were characterized by XRD, BET, TG/DTA , XPS and 31P MAS-NMR. The activities of these catalysts were tested in the hydrodenitrogenation (HDN) of pyridine and hydrodesulfurization (HDS) of thiophene at 340℃ and 3.0MPa. The results showed that owing to the stronger interaction of the support with the active species, the precursor of WP/Al2O3 catalyst was more difficultly phosphided and a greater amount of W spe- cies was in a high valence state W6+ on the surface of the catalyst prepared by the impregnation method than that by the mixing method. 31P MAS-NMR results indicated that 31P shift from 85% H3PO4 of 2.55×10-4 for WP and 2.57 ×10-4 for WP/γ-Al2O3 catalysts prepared by mixing method. Such WP/Al2O3 catalysts showed higher HDN activi- ties and lower HDS activities than those prepared by the impregnation method under the same loading of WP. WP/γ-Al2O3 catalysts with weak interaction between support and active species were favorable for HDN reaction while the WP/γ-Al2O3 catalysts with strong interaction were favorable for HDS reaction.
基金the National Nature Science Foundation of China (50873026, 21106017)the Production and Research Prospective Joint Research Project (BY2009153)+1 种基金the Science and Technology Support Program (BE2008129) of Jiangsu Province of Chinathe Specialized Research Fund for the Doctoral Program of Higher Education of China (20100092120047) for financial supports
文摘The alumina-modified SBA-15 (A12OJSBA-15) zeolite was prepared in a non-aqueous system by using toluene as the solvent, and was used to support the PtSn-based catalyst for propane dehydrogenation. The BET surface area mea- surements, hydrogen chemisorption, FT-IR spectroscopy, NH3-TPD, XPS and TPO techniques were used to characterize the catalysts. Test results showed that the addition of alumina not only could modify the acid function of the support but also the structure of the metallic phase, thus affecting their catalytic properties. Among these catalysts studied, the PtSn/AI203 (5%)/ SBA-15 catalyst exhibited a best catalytic performance in terms of propane conversion and selectivity to propene. The high catalytic performance might be attributed to the relatively good Pt metal dispersion and/or the strong interaction between Pt and Sn species.
基金supports provided by the Production and Research Prospective Joint Research Project (BY2009153)the Science and Technology Support Program (BE2008129)of jiansu Province of chinathe National Natural Science Foundation of China(50873026)
文摘PtSnNaGa/ZSM-5 catalysts with different contents of Ga were prepared and characterized by X-ray diffraction (XRD), nitrogen adsorption, hydrogen chemisorption, ammonia temperature-programmed desorption (NH3-TPD), hydrogen temperature-programmed reduction (H2-TPR), and temperature-programmed oxidation (TPO) techniques. The performances of these catalysts for propane dehydrogenation were investigated. The test results indicated that the addition of Ga not only could improve the catalytic stability and propene selectivity, but also could effectively prevent the catalysts from coking. It was found that the PtSnNaGa(0.5 m%)/ZSM-5 catalyst exhibited the best performance in terms of propene selectivity and propane conversion. The high catalytic performance was most probably attributed to the presence of Ga that could strength- en the interaction between metals and the support to stabilize the catalytic active sites.
基金financially supported by the National Basic Research Program of China(2015CB856600)the National Natural Science Foundation of China(21422209,21432011,21421091)
文摘A novel hydrido iridium chloride complex supported by a tetradentate PNCP ligand has been synthesized and characterized. Upon activation with NaOtBu, the PNCP-IrHC1 complex is active for transfer dehydrogenation of cyclic and linear alkanes.