o-Dichlorobenzene (o-DCB) was dechlorinated by Pd/Fe powder in water throughcatalytic reduction. The dechlorination reaction is believed to take place on the surface site ofthe catalyst via a pseuclo-first-order react...o-Dichlorobenzene (o-DCB) was dechlorinated by Pd/Fe powder in water throughcatalytic reduction. The dechlorination reaction is believed to take place on the surface site ofthe catalyst via a pseuclo-first-order reaction. The final reduction product of o-DCB is benzene.The dechlorination rate increases with the increase of bulk loading of palladium due to the increaseof both the surface loading of palladium and the total surface area. Dechlorination efficiencyaccounts for 90% at Pd/Fe mass ratio 0.02% and metal to solution ratio about 53.3g · L^(-1) in 120minutes. Dechlorination is affected by the reaction temperature, pH, Pd/Fe ratio and the addition ofPd/Fe. E_a is found to be 102.5 kJ · mol^(-1) in the temperature range of 287—313 K.展开更多
基金the Returnee Foundation of Ministry of Education of China (No. 2002-247)Science and Technology Project of Zhejiang Province (No. 2004C34006).
文摘o-Dichlorobenzene (o-DCB) was dechlorinated by Pd/Fe powder in water throughcatalytic reduction. The dechlorination reaction is believed to take place on the surface site ofthe catalyst via a pseuclo-first-order reaction. The final reduction product of o-DCB is benzene.The dechlorination rate increases with the increase of bulk loading of palladium due to the increaseof both the surface loading of palladium and the total surface area. Dechlorination efficiencyaccounts for 90% at Pd/Fe mass ratio 0.02% and metal to solution ratio about 53.3g · L^(-1) in 120minutes. Dechlorination is affected by the reaction temperature, pH, Pd/Fe ratio and the addition ofPd/Fe. E_a is found to be 102.5 kJ · mol^(-1) in the temperature range of 287—313 K.