Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective a...Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective approach to decreasing acidity and the acid removal rate reaches 80%. Temperature is one of the main factors that determine the acid removal reaction. When the temperature ranges from 420oC to 440oC, the acid removal rate increases with the rise of the reaction temperature, but the increase slows down gradually. At the reaction temperature below 440oC, the long reaction time favors the acid removal. The cracking and polymerization of hydrocarbon molecules take place so that the properties of the crude oil change at the same time when the highly acidic crude is thermally treated.展开更多
A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional c...A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional caustic wash of distillate oils, this technology has a lot of merits, such as the broad range of distillates to be processed, low caustic consumption, recycle of deacidifying agent, absence of waste caustic discharge, and low equipment revamp expenses, which can have promising perspectives for exploitation and application of this technology.展开更多
The poor quality of crude oil obviously leads to high sulfur contents of oil products, and the technology for desulfurization of crude oil is urgently needed so that the sulfur contents in petroleum product could be r...The poor quality of crude oil obviously leads to high sulfur contents of oil products, and the technology for desulfurization of crude oil is urgently needed so that the sulfur contents in petroleum product could be reduced from the root. This paper describes the progress in technology for desulfurization of crude oil. The present technologies for desulfurization of crude oil include caustic washing, dry gas desulfurization, hydrodesulfurization (HDS), etc. The new combined technologies for desulfurization of crude oil being studied are: biodesulfurization (BDS), hydrogenationbacterial catalysis, the microwave-catalytic hydrogenation, the BDS-OD-RA desulfurization and oxidative desulfurization in electrostatic fields, and the ultrasonic/microwave-catalytic oxidation applied in our lab, with their development trends being also discussed.展开更多
The FCC naphtha selective hydrodesulfurization technology(RSDS-II)has been tested with different feedstocks in pilot scale.The results show that RSDS-II technology is viable in terms of its adaptability to different f...The FCC naphtha selective hydrodesulfurization technology(RSDS-II)has been tested with different feedstocks in pilot scale.The results show that RSDS-II technology is viable in terms of its adaptability to different feedstocks.To produce gasoline with a sulfur content of less than 50μg/g by the RSDS-II technology,the gasoline RON loss is less than 1.8,0.9and 0.2 units,respectively,upon processing the conventional high-sulfur and high-olefin FCC naphtha,the high-sulfur MIP naphtha,and the medium-sulfur or low-sulfur MIP naphtha.Upon using the naphtha produced from pre-hydrotreated FCC feedstock as the RSDS-II feedstock to manufacture gasoline with a sulfur content of lower than 10μg/g,the RON loss does not exceed 1.0 unit.The RSDS-II technology has been commercialized successfully at many refineries.The result of operating commercial RSDS-II unit at the Shanghai Petrochemical Company has revealed that upon processing a feedstock containing 38.7 v% —43.3 v% of olefins and 250—470 mg/g of sulfur,the sulfur content in the treated gasoline ranges from 33μg/g to 46μg/g and the RON loss is equal to only 0.3—0.6 units.Till now this RSDS-II unit has been operating smoothly over 30 months.Thanks to its high HDS activity and good selectivity,the RSDS-II technology can meet the refinery’s needs for adequate upgrading of gasoline.展开更多
This article refers to the procedure for selection, evaluation and development of the LADS-D desorption agent associated with the LADS-A adsorbent used in the non-hydroprocessing adsorptive desulfurization (LADS) proc...This article refers to the procedure for selection, evaluation and development of the LADS-D desorption agent associated with the LADS-A adsorbent used in the non-hydroprocessing adsorptive desulfurization (LADS) process for FCC naphtha developed by LPEC Refining Research Institute. The LADS-D desorption agent can effectively remove the sulfides adsorbed on the LADS-A adsorbent. The saturated LADS-A adsorbent can be instantly regenerated by the LADS-D desorption agent to recover its adsorption activity. The LADS-D desorption agent can not only effectively remove all impurities adsorbed on the adsorbent, but also has strong ability to dissolve the impurities to keep a stable desorption efficiency of adsorbent to be basically commensurate with fresh adsorbent after extended use.展开更多
文摘Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective approach to decreasing acidity and the acid removal rate reaches 80%. Temperature is one of the main factors that determine the acid removal reaction. When the temperature ranges from 420oC to 440oC, the acid removal rate increases with the rise of the reaction temperature, but the increase slows down gradually. At the reaction temperature below 440oC, the long reaction time favors the acid removal. The cracking and polymerization of hydrocarbon molecules take place so that the properties of the crude oil change at the same time when the highly acidic crude is thermally treated.
文摘A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional caustic wash of distillate oils, this technology has a lot of merits, such as the broad range of distillates to be processed, low caustic consumption, recycle of deacidifying agent, absence of waste caustic discharge, and low equipment revamp expenses, which can have promising perspectives for exploitation and application of this technology.
基金to financial supports from the Science and Technology Office of Liaoning Province(Project Number:2008403001)the Liaoning Provincial Office of Education for Innovation Team(Project Number:2009T002).
文摘The poor quality of crude oil obviously leads to high sulfur contents of oil products, and the technology for desulfurization of crude oil is urgently needed so that the sulfur contents in petroleum product could be reduced from the root. This paper describes the progress in technology for desulfurization of crude oil. The present technologies for desulfurization of crude oil include caustic washing, dry gas desulfurization, hydrodesulfurization (HDS), etc. The new combined technologies for desulfurization of crude oil being studied are: biodesulfurization (BDS), hydrogenationbacterial catalysis, the microwave-catalytic hydrogenation, the BDS-OD-RA desulfurization and oxidative desulfurization in electrostatic fields, and the ultrasonic/microwave-catalytic oxidation applied in our lab, with their development trends being also discussed.
基金financially supported bu the Nationol Key Technology R&D Program of China(2007BAE43B01)and SINOPEC Corporation(contact No.106076)
文摘The FCC naphtha selective hydrodesulfurization technology(RSDS-II)has been tested with different feedstocks in pilot scale.The results show that RSDS-II technology is viable in terms of its adaptability to different feedstocks.To produce gasoline with a sulfur content of less than 50μg/g by the RSDS-II technology,the gasoline RON loss is less than 1.8,0.9and 0.2 units,respectively,upon processing the conventional high-sulfur and high-olefin FCC naphtha,the high-sulfur MIP naphtha,and the medium-sulfur or low-sulfur MIP naphtha.Upon using the naphtha produced from pre-hydrotreated FCC feedstock as the RSDS-II feedstock to manufacture gasoline with a sulfur content of lower than 10μg/g,the RON loss does not exceed 1.0 unit.The RSDS-II technology has been commercialized successfully at many refineries.The result of operating commercial RSDS-II unit at the Shanghai Petrochemical Company has revealed that upon processing a feedstock containing 38.7 v% —43.3 v% of olefins and 250—470 mg/g of sulfur,the sulfur content in the treated gasoline ranges from 33μg/g to 46μg/g and the RON loss is equal to only 0.3—0.6 units.Till now this RSDS-II unit has been operating smoothly over 30 months.Thanks to its high HDS activity and good selectivity,the RSDS-II technology can meet the refinery’s needs for adequate upgrading of gasoline.
文摘This article refers to the procedure for selection, evaluation and development of the LADS-D desorption agent associated with the LADS-A adsorbent used in the non-hydroprocessing adsorptive desulfurization (LADS) process for FCC naphtha developed by LPEC Refining Research Institute. The LADS-D desorption agent can effectively remove the sulfides adsorbed on the LADS-A adsorbent. The saturated LADS-A adsorbent can be instantly regenerated by the LADS-D desorption agent to recover its adsorption activity. The LADS-D desorption agent can not only effectively remove all impurities adsorbed on the adsorbent, but also has strong ability to dissolve the impurities to keep a stable desorption efficiency of adsorbent to be basically commensurate with fresh adsorbent after extended use.