Energy recovery device (ERD) is an important part of the seawater reverse osmosis (SWRO) desalination system. There are principally two kinds of ERDs, the centrifugal type and the positive displacement (PD) type...Energy recovery device (ERD) is an important part of the seawater reverse osmosis (SWRO) desalination system. There are principally two kinds of ERDs, the centrifugal type and the positive displacement (PD) type. The PD type is of extensive concern and is preferred in large-scale plants. In this article, an innovative fluid switcher was presented and a two-cylinder hydraulic energy recovery unit with a lab-scale fluid switcher was set up. Tap water was used as the working medium instead of the actual seawater and brine in SWRO desalination plants. Under steady state operating conditions, the experimental results were obtained on the variations of the pressure and flow rate to and from the energy recovery unit. The hydraulic recovery efficiency (En) of the energy recovery unit with the fluid switcher reached up to 76.83%.展开更多
The modelling and experimental investigation of a thermally coupled humidification-dehumidification desalination process using a carbon-filled-polypropylene shell-tube column are presented. A heat/mass transfer model ...The modelling and experimental investigation of a thermally coupled humidification-dehumidification desalination process using a carbon-filled-polypropylene shell-tube column are presented. A heat/mass transfer model is established to study the correlation among productivity, thermal efficiency, physicochemical parameters (gas/liquid phase temperature, heat/mass transfer coefficient, Reynolds number etc.), and operating conditions (the temperature of feed water, the flow rates of external steam, feed water, and carrier air); at the same time, the effects of operating conditions on the productivity and thermal eficiency of the column are investigated both theoretically and experimentally, which indicate that the optimum flow rates of external steam, feed water, and carder gas are 0.18, 60, and 10kg.h^-l, respectively, and the higher the feed water temperature (≤95℃) is, the greater the productivity and the thermal efficiency will be. Furthermore, performance comparison with the previous study shows that the condensate productivity of this carbon-filled-plastic column is not lower than that of the copper column, which demonstrates the practicability and feasibility of applying such a plastic column to the humidification-dehumidification desalination process.展开更多
A vertical tubular desalination unit with shell and tube structure was built to perform humidification and dehumidification simultaneously on the tube and shell side of the column, respectively. The effects of several...A vertical tubular desalination unit with shell and tube structure was built to perform humidification and dehumidification simultaneously on the tube and shell side of the column, respectively. The effects of several operating conditions on the productivity and thermal efficiency of the column were investigated. The results show that both the productivity and thermal efficiency of the column enhance with the elevation of the inlet water temperature. The flow rates of water and carrier gas both have optimal operating ranges, which are 10-30 kg·h^-1 and 4-7kg·h^-1 for the present column, respectively. Meanwhile, the increase of external steam flow rate will promote the productivity of the column but reduce its thermal efficiency.展开更多
Through a simulation test carried out with soil columns (61.8 cm in diameter), the effect of precipitation on salt-water dynamics in soils was studied by in-situ monitoring of salt-water dynamics using soil salinity s...Through a simulation test carried out with soil columns (61.8 cm in diameter), the effect of precipitation on salt-water dynamics in soils was studied by in-situ monitoring of salt-water dynamics using soil salinity sensors and tensiometers. The results show that in the profile of whole silty loam soil, the surface runoff volume due to precipitation and the salt-leaching role of infiltrated precipitation increased with the depth of ground water; and in the profile with an intercalated bed of clay or with a thick upper layer of clay, the amount of surface runoff was greater but the salt-leaching role of precipitation was smaller than those in the profile of whole silty loam soil. In case of soil water being supplemented by precipitation, the evaporation of groundwater in the soil columns reduced, resulting in a great decline of salt accumulation from soil profile to surface soil. The effect of precipitation on the water regime of soil profile was performed via both water infiltration and water pressure transfer. The direct infiltration depth of precipitation was less than 1 m in general, but water pressure transfer could go up to groundwater surface directly.展开更多
A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater we...A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater were volatilized in the evaporation system and then the vapor was combusted in an incinerator. Simulated phenol wastewater containing sodium chloride was evaporated and concentrated and sodium chloride was crystallized in different parameters. The experimental results showed that the higher initial concentration of sodium chloride increases the ratio of volatilization of VOCs, which was due to the effect of “salting out” (a decrease in the solubility of the nonelectrolyte in the solution, or more rigorously, an increase in its activity coef-ficient, caused by the salt addition (Furter and Cook, 1967)). When evaporation speed was increased from 1.67 ml/min to 2.73 ml/min, the total removal coefficient of sodium chloride was about 99.88%~99.99%. This pretreatment procedure eliminates the slag phenomenon caused by Na+ and K+ salts during wastewater incineration, so the incinerator could operate continuously, and the wastewater evaporation could increase the heat value of wastewater, and the operation cost would be reduced.展开更多
Reduction of nitrate by zero-valent iron is a highly exergonic reaction that has long been known to occur. Use of scrap iron filings (SIF) as the PRB (Permeable Reactive Barrier) material can be used to recycle certai...Reduction of nitrate by zero-valent iron is a highly exergonic reaction that has long been known to occur. Use of scrap iron filings (SIF) as the PRB (Permeable Reactive Barrier) material can be used to recycle certain by-products, and identify cheaper replacements for expensive conventional PRB materials, especially pure metallic iron. The feasibility of reductive denitrification of nitrate by SIF was studied by batch experiments. Operational parameters such as pH value, SIF dosage and initial concentration of nitrate were investigated. The removal efficiency of nitrate reached 80% under the conditions of pH of 2.5, nitrate initial con- centration of 45 mg/L and SIF dosage of 100 g/L within 4 h. Results indicated that nitrate removal is inversely related to pH. Low pH value condition favors for the nitrate transformation. Different from the results of others who studied nitrate reduction using iron powder, we found that there was a lag time before nitrate reduction occurs, even at low pH. Finally, the possible mechanism of nitrate reduction by Fe0 is discussed.展开更多
A polypiperazine amide (PA)/polysulfone (PSF) thin film composite (TFC) was prepared by interracial polymerization (IP) using a trimesoyl chloride hexane solution as the oil phase and a piperazine aqueous solu...A polypiperazine amide (PA)/polysulfone (PSF) thin film composite (TFC) was prepared by interracial polymerization (IP) using a trimesoyl chloride hexane solution as the oil phase and a piperazine aqueous solution as the water phase on a porous polysulfone hollow fiber substrate. Its separating behaviors were investigated systematically to various salts such as NaCl KCl, Na2SO4, MgCl2, CaCl2 and MgSO4, showing the highest rejection rate to Na2SO4, the second to MgSO4 the third to MgCl2 and CaCl2, and the lowest to KCI, NaCl, being 99%, 98%, 70%, 60%, 15% and 10% respectively. Under an increasing pressure or with time, the rejection rate of the TFC rises to a plateau. To various concentration of the feed, the rejection rate reduced gradually with the higher concentration.展开更多
The polypropylene tubes with surface modification were installed in a baffled shell-tube column to conduct the thermally coupled humidification and dehumidification desalination process. The effects of several operati...The polypropylene tubes with surface modification were installed in a baffled shell-tube column to conduct the thermally coupled humidification and dehumidification desalination process. The effects of several operating parameters (feed water temperature, water flow rate, carrier air flow rate, and external steam flow rate) on the productivity and thermal efficiency of this column were investigated experimentally. The results show that the feed water temperature has a positive effect on the productivity and thermal efficiency, while the flow rates of external steam, feed water, and carrier air should be optimized within the ranges of 0.006-0.020 kg·m^-2·s^-1 , 0.005-0.015 kg·m^-2·s^-1, and 0.7-1.3kg·m^-2·s^-1, respectively; the flow rates of feed water and carrier air are greatly controlled by the wetting state of the tubes. In comparison with the previous desalination column installing the coppery tubes, the present column can reach nearly the same production capacity of distilled water, which demonstrates the feasibility of applying such a plastic column to the humidification and dehumidification desalination process.展开更多
基金the Seawater Desalination Research Programs of Tianjin(043185211-4)
文摘Energy recovery device (ERD) is an important part of the seawater reverse osmosis (SWRO) desalination system. There are principally two kinds of ERDs, the centrifugal type and the positive displacement (PD) type. The PD type is of extensive concern and is preferred in large-scale plants. In this article, an innovative fluid switcher was presented and a two-cylinder hydraulic energy recovery unit with a lab-scale fluid switcher was set up. Tap water was used as the working medium instead of the actual seawater and brine in SWRO desalination plants. Under steady state operating conditions, the experimental results were obtained on the variations of the pressure and flow rate to and from the energy recovery unit. The hydraulic recovery efficiency (En) of the energy recovery unit with the fluid switcher reached up to 76.83%.
基金Supported by the National Natural Science Foundation of China and China Energy Conservation Investment Corporation as a Key Project (No.20236030).
文摘The modelling and experimental investigation of a thermally coupled humidification-dehumidification desalination process using a carbon-filled-polypropylene shell-tube column are presented. A heat/mass transfer model is established to study the correlation among productivity, thermal efficiency, physicochemical parameters (gas/liquid phase temperature, heat/mass transfer coefficient, Reynolds number etc.), and operating conditions (the temperature of feed water, the flow rates of external steam, feed water, and carrier air); at the same time, the effects of operating conditions on the productivity and thermal eficiency of the column are investigated both theoretically and experimentally, which indicate that the optimum flow rates of external steam, feed water, and carder gas are 0.18, 60, and 10kg.h^-l, respectively, and the higher the feed water temperature (≤95℃) is, the greater the productivity and the thermal efficiency will be. Furthermore, performance comparison with the previous study shows that the condensate productivity of this carbon-filled-plastic column is not lower than that of the copper column, which demonstrates the practicability and feasibility of applying such a plastic column to the humidification-dehumidification desalination process.
基金Supported by the National Natural Science Foundation of China China Energy Conservation Investment Corporation as a key project (No. 20236030).
文摘A vertical tubular desalination unit with shell and tube structure was built to perform humidification and dehumidification simultaneously on the tube and shell side of the column, respectively. The effects of several operating conditions on the productivity and thermal efficiency of the column were investigated. The results show that both the productivity and thermal efficiency of the column enhance with the elevation of the inlet water temperature. The flow rates of water and carrier gas both have optimal operating ranges, which are 10-30 kg·h^-1 and 4-7kg·h^-1 for the present column, respectively. Meanwhile, the increase of external steam flow rate will promote the productivity of the column but reduce its thermal efficiency.
文摘Through a simulation test carried out with soil columns (61.8 cm in diameter), the effect of precipitation on salt-water dynamics in soils was studied by in-situ monitoring of salt-water dynamics using soil salinity sensors and tensiometers. The results show that in the profile of whole silty loam soil, the surface runoff volume due to precipitation and the salt-leaching role of infiltrated precipitation increased with the depth of ground water; and in the profile with an intercalated bed of clay or with a thick upper layer of clay, the amount of surface runoff was greater but the salt-leaching role of precipitation was smaller than those in the profile of whole silty loam soil. In case of soil water being supplemented by precipitation, the evaporation of groundwater in the soil columns reduced, resulting in a great decline of salt accumulation from soil profile to surface soil. The effect of precipitation on the water regime of soil profile was performed via both water infiltration and water pressure transfer. The direct infiltration depth of precipitation was less than 1 m in general, but water pressure transfer could go up to groundwater surface directly.
文摘A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater were volatilized in the evaporation system and then the vapor was combusted in an incinerator. Simulated phenol wastewater containing sodium chloride was evaporated and concentrated and sodium chloride was crystallized in different parameters. The experimental results showed that the higher initial concentration of sodium chloride increases the ratio of volatilization of VOCs, which was due to the effect of “salting out” (a decrease in the solubility of the nonelectrolyte in the solution, or more rigorously, an increase in its activity coef-ficient, caused by the salt addition (Furter and Cook, 1967)). When evaporation speed was increased from 1.67 ml/min to 2.73 ml/min, the total removal coefficient of sodium chloride was about 99.88%~99.99%. This pretreatment procedure eliminates the slag phenomenon caused by Na+ and K+ salts during wastewater incineration, so the incinerator could operate continuously, and the wastewater evaporation could increase the heat value of wastewater, and the operation cost would be reduced.
基金Project (No. 20407015) supported by the National Natural Sci-ence Foundation of China
文摘Reduction of nitrate by zero-valent iron is a highly exergonic reaction that has long been known to occur. Use of scrap iron filings (SIF) as the PRB (Permeable Reactive Barrier) material can be used to recycle certain by-products, and identify cheaper replacements for expensive conventional PRB materials, especially pure metallic iron. The feasibility of reductive denitrification of nitrate by SIF was studied by batch experiments. Operational parameters such as pH value, SIF dosage and initial concentration of nitrate were investigated. The removal efficiency of nitrate reached 80% under the conditions of pH of 2.5, nitrate initial con- centration of 45 mg/L and SIF dosage of 100 g/L within 4 h. Results indicated that nitrate removal is inversely related to pH. Low pH value condition favors for the nitrate transformation. Different from the results of others who studied nitrate reduction using iron powder, we found that there was a lag time before nitrate reduction occurs, even at low pH. Finally, the possible mechanism of nitrate reduction by Fe0 is discussed.
基金China High-Tech R&D Program (863 Program) #2002AA302619 and Tianjin Science and Technology Develop Program #05YFGDGX10000-2
文摘A polypiperazine amide (PA)/polysulfone (PSF) thin film composite (TFC) was prepared by interracial polymerization (IP) using a trimesoyl chloride hexane solution as the oil phase and a piperazine aqueous solution as the water phase on a porous polysulfone hollow fiber substrate. Its separating behaviors were investigated systematically to various salts such as NaCl KCl, Na2SO4, MgCl2, CaCl2 and MgSO4, showing the highest rejection rate to Na2SO4, the second to MgSO4 the third to MgCl2 and CaCl2, and the lowest to KCI, NaCl, being 99%, 98%, 70%, 60%, 15% and 10% respectively. Under an increasing pressure or with time, the rejection rate of the TFC rises to a plateau. To various concentration of the feed, the rejection rate reduced gradually with the higher concentration.
基金Supported by National Natural Science Foundation of ChinaChina Energy Conservation Investment Corporation as a key project(No.20236030) .
文摘The polypropylene tubes with surface modification were installed in a baffled shell-tube column to conduct the thermally coupled humidification and dehumidification desalination process. The effects of several operating parameters (feed water temperature, water flow rate, carrier air flow rate, and external steam flow rate) on the productivity and thermal efficiency of this column were investigated experimentally. The results show that the feed water temperature has a positive effect on the productivity and thermal efficiency, while the flow rates of external steam, feed water, and carrier air should be optimized within the ranges of 0.006-0.020 kg·m^-2·s^-1 , 0.005-0.015 kg·m^-2·s^-1, and 0.7-1.3kg·m^-2·s^-1, respectively; the flow rates of feed water and carrier air are greatly controlled by the wetting state of the tubes. In comparison with the previous desalination column installing the coppery tubes, the present column can reach nearly the same production capacity of distilled water, which demonstrates the feasibility of applying such a plastic column to the humidification and dehumidification desalination process.