For the purpose of effective and economic desulfurization of flue-gas, the predominance area diagram of the Mn-S-O system at different temperatures was constructed based on the thermodynamic data obtained from the lit...For the purpose of effective and economic desulfurization of flue-gas, the predominance area diagram of the Mn-S-O system at different temperatures was constructed based on the thermodynamic data obtained from the literatures. It is seen from this figure that flue-gas desulfurization by manganese oxides is feasible from the thermodynamic point of view. Additionally, the most appropriate temperature range for flue-gas desulfurization is between 600 and 800 K, and the reaction is strongly exothermic to maintain the heat balance. The natural manganese ores encompass large tunnels that exhibit large surface areas and highly chemical activity, which can provide a high enough SO2 removing efficiency. From the superposition of the diagrams of Mn-S-O and Fe-S-O systems, it is found that there is a coexistent stability region of MnSO4 and Fe2O3, which provides the possibility of desulfurization by selective sulfation without ferric sulfate forming. A multi-stage desulfurization system has been discussed briefly.展开更多
The multi-stages humidifier semi-dry flue gas cleaning technology, the CRS plasma flue gas cleaning technology and oxidative additive flue gas cleaning technology were investigated for multi-pollutants removal. The se...The multi-stages humidifier semi-dry flue gas cleaning technology, the CRS plasma flue gas cleaning technology and oxidative additive flue gas cleaning technology were investigated for multi-pollutants removal. The semi-dry flue gas cleaning technology using multi-stages humidifier and additive can improve oxidation and absorption, and it can achieve high multi-pollutants removal efficiency. The CRS discharge can produce many OH radicals that promote NO oxidation. Combining NaOH absorption can achieve high deSO2 and deNO, efficiencies. It is fit for the reconstruction of primary wet flue gas desulfurization (WFGD). In addition, using NaClO2 as additive in the absorbent of WFGD can obtain very high removal efficiency of SO2 and NOx.展开更多
The Emission Standards of Air Pollutants from Thermal Power Plants (GB 13223-2011) prescribe a stricter limitation to air pollutants than ever before. As set in the new emission standard, the limitations of SO2 and NO...The Emission Standards of Air Pollutants from Thermal Power Plants (GB 13223-2011) prescribe a stricter limitation to air pollutants than ever before. As set in the new emission standard, the limitations of SO2 and NOX for sensitive areas under normal conditions are 50 mg/m3 and 100 mg/m3, respectively. The objective analysis and suggestions are proposed. The recent status and operational experience of desulfurization and denitrification equipment are discussed. From the discussions, thermal power plants face a huge challenge to satisfy the new emission standards. For further reducing of the emission concentrations of SO2 and NOX, three methods were introduced, including: seriously implementing the emission standards, improving treatment equipment, and increasing the efficiencies of desulfurization and denitrification.展开更多
Deep desulfurization of liquid fuels is an important and challenging issue in worldwide petroleum refining industry.Extraction and catalytic oxidative desulfurization(ECODS)of liquid fuels using a series of ionic liqu...Deep desulfurization of liquid fuels is an important and challenging issue in worldwide petroleum refining industry.Extraction and catalytic oxidative desulfurization(ECODS)of liquid fuels using a series of ionic liquids(ILs)with two functionalized groups,such as[(CH2)2COOHmim]Cl/n Fe Cl3,[(CH2)2COOHmim]Cl/n Zn Cl2,and[Amim]Cl/n Fe Cl3,was studied.In the ECODS,the ILs were used as both extractant and catalyst and 30 wt%hydrogen peroxide(H2O2)solution as oxidant.The effects of molar ratios of[(CH2)2COOHmim]Cl(or[Amim]Cl)to Fe Cl3(or Zn Cl2)in ILs,H2O2/sulfur(O/S)molar ratio,reaction temperature,and the nature of sulfur compounds on sulfur removal were investigated.The natures of the functional groups(–COOH,–CH2–CH=CH2)in cations and the acid strength of anions play important roles in the ECODS and affect the reaction time,temperature,and desulfurization efficiency of different substrates.Also,nitrogen-containing compounds(pyridine,pyrrole,and quinoline)could be removed simultaneously in the ECODS and had different effects on dibenzothiophene removal.展开更多
基金Project(51344006)supported by the National Natural Science Foundation of China
文摘For the purpose of effective and economic desulfurization of flue-gas, the predominance area diagram of the Mn-S-O system at different temperatures was constructed based on the thermodynamic data obtained from the literatures. It is seen from this figure that flue-gas desulfurization by manganese oxides is feasible from the thermodynamic point of view. Additionally, the most appropriate temperature range for flue-gas desulfurization is between 600 and 800 K, and the reaction is strongly exothermic to maintain the heat balance. The natural manganese ores encompass large tunnels that exhibit large surface areas and highly chemical activity, which can provide a high enough SO2 removing efficiency. From the superposition of the diagrams of Mn-S-O and Fe-S-O systems, it is found that there is a coexistent stability region of MnSO4 and Fe2O3, which provides the possibility of desulfurization by selective sulfation without ferric sulfate forming. A multi-stage desulfurization system has been discussed briefly.
基金supported by NSF of Zhejiang (Y507079)EOP of Zhejiang (Y200702725)PSF of China (20080431325)
文摘The multi-stages humidifier semi-dry flue gas cleaning technology, the CRS plasma flue gas cleaning technology and oxidative additive flue gas cleaning technology were investigated for multi-pollutants removal. The semi-dry flue gas cleaning technology using multi-stages humidifier and additive can improve oxidation and absorption, and it can achieve high multi-pollutants removal efficiency. The CRS discharge can produce many OH radicals that promote NO oxidation. Combining NaOH absorption can achieve high deSO2 and deNO, efficiencies. It is fit for the reconstruction of primary wet flue gas desulfurization (WFGD). In addition, using NaClO2 as additive in the absorbent of WFGD can obtain very high removal efficiency of SO2 and NOx.
文摘The Emission Standards of Air Pollutants from Thermal Power Plants (GB 13223-2011) prescribe a stricter limitation to air pollutants than ever before. As set in the new emission standard, the limitations of SO2 and NOX for sensitive areas under normal conditions are 50 mg/m3 and 100 mg/m3, respectively. The objective analysis and suggestions are proposed. The recent status and operational experience of desulfurization and denitrification equipment are discussed. From the discussions, thermal power plants face a huge challenge to satisfy the new emission standards. For further reducing of the emission concentrations of SO2 and NOX, three methods were introduced, including: seriously implementing the emission standards, improving treatment equipment, and increasing the efficiencies of desulfurization and denitrification.
基金supported by the Special Funds of the National Natural Science Foundation of China(21127011)the National Natural Science Foundation of China(21076113,21206169)National Basic Research Program of China(2013CB733506)
文摘Deep desulfurization of liquid fuels is an important and challenging issue in worldwide petroleum refining industry.Extraction and catalytic oxidative desulfurization(ECODS)of liquid fuels using a series of ionic liquids(ILs)with two functionalized groups,such as[(CH2)2COOHmim]Cl/n Fe Cl3,[(CH2)2COOHmim]Cl/n Zn Cl2,and[Amim]Cl/n Fe Cl3,was studied.In the ECODS,the ILs were used as both extractant and catalyst and 30 wt%hydrogen peroxide(H2O2)solution as oxidant.The effects of molar ratios of[(CH2)2COOHmim]Cl(or[Amim]Cl)to Fe Cl3(or Zn Cl2)in ILs,H2O2/sulfur(O/S)molar ratio,reaction temperature,and the nature of sulfur compounds on sulfur removal were investigated.The natures of the functional groups(–COOH,–CH2–CH=CH2)in cations and the acid strength of anions play important roles in the ECODS and affect the reaction time,temperature,and desulfurization efficiency of different substrates.Also,nitrogen-containing compounds(pyridine,pyrrole,and quinoline)could be removed simultaneously in the ECODS and had different effects on dibenzothiophene removal.