The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the ...The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.展开更多
The interfacial adhesive properties ofpolypropylene/stainless steel were studied by the blister test. The polypropylene film with a squared free-standing window was pressured by oil from one side of film. The correspo...The interfacial adhesive properties ofpolypropylene/stainless steel were studied by the blister test. The polypropylene film with a squared free-standing window was pressured by oil from one side of film. The corresponding deformation field was observed by a digital speckle correlation method. The experimental results show that the squared film deforms and debonds from stainless steel with the increase of pressure. The debonding of the squared film in initiates from the center of edge and extends to the comer, and then the deformation of film evolves from square to circle shape. The interfacial adhesive energy of polypropylene/stainless steel is (22.60±1.55) J/m2, which is in agreement with that measured by film with a circular window.展开更多
The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation...The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.展开更多
Composites of montmorillonite clay and sawdust were prepared with the desired result being having new materials which burn longer than unmodified sawdust. The three forms of clay used for preparation of composites wer...Composites of montmorillonite clay and sawdust were prepared with the desired result being having new materials which burn longer than unmodified sawdust. The three forms of clay used for preparation of composites were unmodified montmorillonite, mono-ionic montmorillonite and organically modified montmorillonite. Montmorillonite clay was converted to mono-ionic clay by ion exchange with sodium using a sodium chloride solution. The mono-ionic clay was organically modified with an organic surfactant, methyl triphenyl phosphonium bromide. Nanocomposites were then prepared by combining the modified and raw forms of the clay with sawdust. The solution blending method was used to make the nanocomposites. The samples were analysed using thermogravimetric analysis and cone calorimetry. The studies showed that the nanocomposite which was made from sawdust and 1% organically modified clay had the most improved results in terms of burning time and thermal stability, as well as giving a calorific value closest to unmodified sawdust and the least amount of residue.展开更多
A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites(FRC) subjected to uniaxial tensile loading along the fiber direction.The matrix damage ...A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites(FRC) subjected to uniaxial tensile loading along the fiber direction.The matrix damage and interfacial debonding,which are the main failure modes,are considered in the model.The maximum stress criterion with the linear damage evolution theory is used for the matrix.The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory,in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents(fiber and matrix).The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions,which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers.The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope.The relation curves between damage,debonding and ineffective region lengths with external strain loading are obtained.展开更多
基金Supported by the National Natural Science Foundation of China(51075204)the Graduate Innovation Foundation of Jiangsu Province(CX08B-133Z)the Doctoral Innovation Foundation of Nanjing University of Aeronautics and Astronautics(BCXJ08-05)~~
文摘The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.
基金Projects(11102176,11172258,10828205)supported by the National Natural Science Foundation of China
文摘The interfacial adhesive properties ofpolypropylene/stainless steel were studied by the blister test. The polypropylene film with a squared free-standing window was pressured by oil from one side of film. The corresponding deformation field was observed by a digital speckle correlation method. The experimental results show that the squared film deforms and debonds from stainless steel with the increase of pressure. The debonding of the squared film in initiates from the center of edge and extends to the comer, and then the deformation of film evolves from square to circle shape. The interfacial adhesive energy of polypropylene/stainless steel is (22.60±1.55) J/m2, which is in agreement with that measured by film with a circular window.
基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2018-ZX04044001-008)the National Natural Science Foundation of China(No.52075328).
文摘The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.
文摘Composites of montmorillonite clay and sawdust were prepared with the desired result being having new materials which burn longer than unmodified sawdust. The three forms of clay used for preparation of composites were unmodified montmorillonite, mono-ionic montmorillonite and organically modified montmorillonite. Montmorillonite clay was converted to mono-ionic clay by ion exchange with sodium using a sodium chloride solution. The mono-ionic clay was organically modified with an organic surfactant, methyl triphenyl phosphonium bromide. Nanocomposites were then prepared by combining the modified and raw forms of the clay with sawdust. The solution blending method was used to make the nanocomposites. The samples were analysed using thermogravimetric analysis and cone calorimetry. The studies showed that the nanocomposite which was made from sawdust and 1% organically modified clay had the most improved results in terms of burning time and thermal stability, as well as giving a calorific value closest to unmodified sawdust and the least amount of residue.
文摘A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites(FRC) subjected to uniaxial tensile loading along the fiber direction.The matrix damage and interfacial debonding,which are the main failure modes,are considered in the model.The maximum stress criterion with the linear damage evolution theory is used for the matrix.The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory,in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents(fiber and matrix).The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions,which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers.The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope.The relation curves between damage,debonding and ineffective region lengths with external strain loading are obtained.