以脱脂椰蓉为研究对象,考察了不同亚临界水降解条件对其降解过程的影响,并测定了100~200℃,不同反应时间下降解产物中还原糖的含量。采用Saeman模型对实验数据进行模拟,建立脱脂椰蓉粉亚临界水降解反应动力学方程,得到亚临界水降解动...以脱脂椰蓉为研究对象,考察了不同亚临界水降解条件对其降解过程的影响,并测定了100~200℃,不同反应时间下降解产物中还原糖的含量。采用Saeman模型对实验数据进行模拟,建立脱脂椰蓉粉亚临界水降解反应动力学方程,得到亚临界水降解动力学参数;并对降解物进行形态学分析。结果表明,Seaman模型能较好的反映脱脂椰蓉粉亚临界水降解的过程,初步降解的反应活化能E_(a1)为35.94 kJ/mol,还原糖降解活化能E_(a2)为32.12 k J/mol,指前因子K_(10)为6.50×10~2min^(-1)、K_(20)为3.24×10~2min^(-1)。该降解过程在140℃、30 min能得到温度的高还原糖产物。脱脂椰蓉粉在亚临界水中降解过程中,形态随温度、时间变化而变化,随着温度的升高原料的转化率逐渐升高,原料由固态转化为液态部分越多,水解程度越大。扫描电镜结果表明,随着降解温度的升高和降解时间的延长,脱脂椰蓉粉的纤维结构破坏越显著。展开更多
文摘以脱脂椰蓉为研究对象,考察了不同亚临界水降解条件对其降解过程的影响,并测定了100~200℃,不同反应时间下降解产物中还原糖的含量。采用Saeman模型对实验数据进行模拟,建立脱脂椰蓉粉亚临界水降解反应动力学方程,得到亚临界水降解动力学参数;并对降解物进行形态学分析。结果表明,Seaman模型能较好的反映脱脂椰蓉粉亚临界水降解的过程,初步降解的反应活化能E_(a1)为35.94 kJ/mol,还原糖降解活化能E_(a2)为32.12 k J/mol,指前因子K_(10)为6.50×10~2min^(-1)、K_(20)为3.24×10~2min^(-1)。该降解过程在140℃、30 min能得到温度的高还原糖产物。脱脂椰蓉粉在亚临界水中降解过程中,形态随温度、时间变化而变化,随着温度的升高原料的转化率逐渐升高,原料由固态转化为液态部分越多,水解程度越大。扫描电镜结果表明,随着降解温度的升高和降解时间的延长,脱脂椰蓉粉的纤维结构破坏越显著。