Fe-ZSM-5 catalysts modified by Cu and Ce by aqueous solution ion-exchange and incipient wetness impregnation methods were tested in the selective catalytic reduction of NO_(x) with NH_(3).A variety of characterization...Fe-ZSM-5 catalysts modified by Cu and Ce by aqueous solution ion-exchange and incipient wetness impregnation methods were tested in the selective catalytic reduction of NO_(x) with NH_(3).A variety of characterization techniques(NH_(3)-SCO,BET,XRD,XPS,UV-Vis,NH_(3)-TPD,H_(2)-TPR)were used to explore the changes of the active sites,acid sites and pore structure of the catalyst.It was found that the dispersion of active Cu species and Fe species had great influences on the catalytic activity in the whole catalytic process.The Cu doping into the Fe-ZSM-5 catalyst produced new active species,isolated Cu ions and CuO particles,resulting in the improved low-temperature catalytic activity.However,the NH_(3) oxidation was enhanced,and part of the Fe^(3+)active sites and more Brønsted acidic sites in the catalyst were occupied by Cu species,which causes the decrease of the high-temperature activity.The recovery of hightemperature activity could be attributed to the recovery of active Cu species and Fe species promoted by Ce and the promotion of active species dispersion.The results provide theoretical support for adjusting the active window of Febased SCR catalyst by multi-metal doping.展开更多
A novel modified pilot scale anaerobic oxidation ditch with additional internal anoxic zones was operated experimentally, aiming to study the improvement of biological nitrogen and phosphorus removal and the effect of...A novel modified pilot scale anaerobic oxidation ditch with additional internal anoxic zones was operated experimentally, aiming to study the improvement of biological nitrogen and phosphorus removal and the effect of enhanced denitrifying phosphorus removal in the process. Under all experimental conditions, the anaero- bic-oxidation ditch with additional internal anoxic zones and an internal recycle ratio of 200% had the highest nutrient removal efficiency. The effluent NH4 -N, total nitrogen (TN), PO3 -P and total phosphorus (TP) contents were 1.2 mg.L-1, 13 mg.L 1, 0.3 mg.L -1 and 0.4 mg.L-1, respectively, all met the discharge standards in China. The TN and TP removal efficiencies were remarkably improved from 37% and 50% to 65% and 88% with the presence of additional internal anoxic zones and internal recycle ratio of 200%. The results indicated that additional internal anoxic zones can optimize the utilization of available carbon source from the anaerobic outflow for denitrification. It was also found that phosphorus removal via the denitrification process was stimulated in the additional internal anoxic zones, which was beneficial for biological nitrogen and phosphorus removal when treating wastewater with a limited carbon source. However, an excess internal recycle would cause nitrite to accumulate in the system. This seems to be harmful to biological phosphorus removal.展开更多
基金Project(51906089)supported by the National Natural Science Foundation of ChinaProject(NELMS2018A18)supported by the National Engineering Laboratory for Mobile Source Emission Control Technology,China+1 种基金Project(XNYQ2021-002)supported by the Provincial Engineering Research Center for New Energy Vehicle Intelligent Control and Simulation Test Technology of Sichuan,ChinaProject(GY2020016)supported by the Zhenjiang City Key R&D Program,China。
文摘Fe-ZSM-5 catalysts modified by Cu and Ce by aqueous solution ion-exchange and incipient wetness impregnation methods were tested in the selective catalytic reduction of NO_(x) with NH_(3).A variety of characterization techniques(NH_(3)-SCO,BET,XRD,XPS,UV-Vis,NH_(3)-TPD,H_(2)-TPR)were used to explore the changes of the active sites,acid sites and pore structure of the catalyst.It was found that the dispersion of active Cu species and Fe species had great influences on the catalytic activity in the whole catalytic process.The Cu doping into the Fe-ZSM-5 catalyst produced new active species,isolated Cu ions and CuO particles,resulting in the improved low-temperature catalytic activity.However,the NH_(3) oxidation was enhanced,and part of the Fe^(3+)active sites and more Brønsted acidic sites in the catalyst were occupied by Cu species,which causes the decrease of the high-temperature activity.The recovery of hightemperature activity could be attributed to the recovery of active Cu species and Fe species promoted by Ce and the promotion of active species dispersion.The results provide theoretical support for adjusting the active window of Febased SCR catalyst by multi-metal doping.
基金Supported by Major Science and Technology Program for Water Pollution Control and Treatment(2008ZX07316)
文摘A novel modified pilot scale anaerobic oxidation ditch with additional internal anoxic zones was operated experimentally, aiming to study the improvement of biological nitrogen and phosphorus removal and the effect of enhanced denitrifying phosphorus removal in the process. Under all experimental conditions, the anaero- bic-oxidation ditch with additional internal anoxic zones and an internal recycle ratio of 200% had the highest nutrient removal efficiency. The effluent NH4 -N, total nitrogen (TN), PO3 -P and total phosphorus (TP) contents were 1.2 mg.L-1, 13 mg.L 1, 0.3 mg.L -1 and 0.4 mg.L-1, respectively, all met the discharge standards in China. The TN and TP removal efficiencies were remarkably improved from 37% and 50% to 65% and 88% with the presence of additional internal anoxic zones and internal recycle ratio of 200%. The results indicated that additional internal anoxic zones can optimize the utilization of available carbon source from the anaerobic outflow for denitrification. It was also found that phosphorus removal via the denitrification process was stimulated in the additional internal anoxic zones, which was beneficial for biological nitrogen and phosphorus removal when treating wastewater with a limited carbon source. However, an excess internal recycle would cause nitrite to accumulate in the system. This seems to be harmful to biological phosphorus removal.