Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were ...Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were investigated and the process conditions were optimized using response surface methodology (RSM). The results show that the effects of roasting temperature and holding time on the removal rate of F and Cl are the most significant, and the effect of stirring speed is the second. The defluorination rate reaches 92.6% while the dechlorination rate reaches 90.2%, under the process conditions of roasting temperature of 700 °C, holding time of 80 min and stirring speed of 120 r/min. The results indicate that the removal of F and Cl from fuming furnace production of zinc oxide fumes using microwave roasting process is feasible and reliable.展开更多
The effect of electrochemical chloride extraction (ECE) on bond strength between steel bar and freeze-thaw concrete contaminated by chloride was experimentally investigated for beam specimens with dimensions of 100 ...The effect of electrochemical chloride extraction (ECE) on bond strength between steel bar and freeze-thaw concrete contaminated by chloride was experimentally investigated for beam specimens with dimensions of 100 mm × 100 mm × 400 ram. During the experiment, 3% NaC1 (vs mass of cement, mass fraction) was mixed into concrete to simulate chloride contamination, and the specimens experienced 0, 25, 50, 75 freeze-thaw cycles before ECE. In the process of ECE, different current densities and durations were adopted. It is indicated that the bond strength between reinforcement and concrete decreases with the increase of freeze-thaw cycles; the more the current and the electric quantity of ECE are, the more the loss of bond strength is; and the largest loss is up to 58.7%. So, it is important to choose proper parameters of ECE for the reinforced concrete structures contaminated by chloride and subjected to freeze-thaw cycles.展开更多
Removal of trace olefins from aromatic liquids had been investigated in the presence of various ionic liquids like 1-ethyl-3-methylimidazoliurn bromochloroaluminate (EMIMBr-AlCl3), 1-butyl-3-methylimidazolium bromoc...Removal of trace olefins from aromatic liquids had been investigated in the presence of various ionic liquids like 1-ethyl-3-methylimidazoliurn bromochloroaluminate (EMIMBr-AlCl3), 1-butyl-3-methylimidazolium bromochloroaluminate (BMIMBr-AlCl3), l-hexyl-3-methylimidazolium bromochloroaluminate (HMIMBr-AlCl3), and 1-octyl-3-methylimidazolium bromochloroaluminate (OMIMBr-A1C13). It was found that the longer the alkyl chain of ionic liquid cations was, the higher the olefins conversion would be. OMIMBr-AlCl3 (with 0.67 molar fraction of AlCl3) had an obvious performance on olefins removal. The influences of various reaction parameters such as the dosage of catalyst, the reaction temperature, and the reaction time on the reaction catalyzed by OMIMBr-AlCl3 were investigated. Under optimum reaction conditions, a higher than 99% conversion of olefins was achieved. The preliminary results revealed that the process could save time, consume less energy, separate products easier, and cause less pollution to the environment.展开更多
A novel heterogeneous catalyst, viscose fiber- supported cobalt phthalocyanine (Co - TDTAPc - F), was prepared by immobilizing cobalt tetra(2.4 - dichloro- 1,3, 5 -triazine)aminophtbalocyanine (Co- TDTAPc) on vi...A novel heterogeneous catalyst, viscose fiber- supported cobalt phthalocyanine (Co - TDTAPc - F), was prepared by immobilizing cobalt tetra(2.4 - dichloro- 1,3, 5 -triazine)aminophtbalocyanine (Co- TDTAPc) on viscose fibers covalcntly. The oxidative removal of chlorophenols such as 2 - chlorophenoi, 4 - chlorophenol, 2, 4 - dichlorophenol, and 2, 4, 6 - trichlorophenol was investigated in the catalytic oxidative system of Co - TDTAPc- F/H2O2. Furthermore, more than 98% of these chloropbenols were decomposed in 4 h. Phenol, oxalic acid, maleic acid, and succinic acid, etc., were detected by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrophotometer (GC - MS), and these short-chain organic acids could be further oxidized easily. The results indicated that the catalytic oxidation in the Co- TDTAPc - F/H2O2 system leaded to a deeper oxidation. In addition, a degradation pathway for chlorophenols was proposed on the basis of detection of intermediate compounds.展开更多
基金Project(51104073)supported by the National Natural Science Foundation of ChinaProject(2013AA064003)supported by the High-tech Research and Development Program of China+1 种基金Project(2014CB643404)supported by the National Basic Research Program of ChinaProject(2012HB008)supported by Yunnan Province Young Academic Technology Leader Reserve Talents,China
文摘Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were investigated and the process conditions were optimized using response surface methodology (RSM). The results show that the effects of roasting temperature and holding time on the removal rate of F and Cl are the most significant, and the effect of stirring speed is the second. The defluorination rate reaches 92.6% while the dechlorination rate reaches 90.2%, under the process conditions of roasting temperature of 700 °C, holding time of 80 min and stirring speed of 120 r/min. The results indicate that the removal of F and Cl from fuming furnace production of zinc oxide fumes using microwave roasting process is feasible and reliable.
基金Project(IRT0518) supported by the Program of Innovative Team of the Ministry of Education of China
文摘The effect of electrochemical chloride extraction (ECE) on bond strength between steel bar and freeze-thaw concrete contaminated by chloride was experimentally investigated for beam specimens with dimensions of 100 mm × 100 mm × 400 ram. During the experiment, 3% NaC1 (vs mass of cement, mass fraction) was mixed into concrete to simulate chloride contamination, and the specimens experienced 0, 25, 50, 75 freeze-thaw cycles before ECE. In the process of ECE, different current densities and durations were adopted. It is indicated that the bond strength between reinforcement and concrete decreases with the increase of freeze-thaw cycles; the more the current and the electric quantity of ECE are, the more the loss of bond strength is; and the largest loss is up to 58.7%. So, it is important to choose proper parameters of ECE for the reinforced concrete structures contaminated by chloride and subjected to freeze-thaw cycles.
文摘Removal of trace olefins from aromatic liquids had been investigated in the presence of various ionic liquids like 1-ethyl-3-methylimidazoliurn bromochloroaluminate (EMIMBr-AlCl3), 1-butyl-3-methylimidazolium bromochloroaluminate (BMIMBr-AlCl3), l-hexyl-3-methylimidazolium bromochloroaluminate (HMIMBr-AlCl3), and 1-octyl-3-methylimidazolium bromochloroaluminate (OMIMBr-A1C13). It was found that the longer the alkyl chain of ionic liquid cations was, the higher the olefins conversion would be. OMIMBr-AlCl3 (with 0.67 molar fraction of AlCl3) had an obvious performance on olefins removal. The influences of various reaction parameters such as the dosage of catalyst, the reaction temperature, and the reaction time on the reaction catalyzed by OMIMBr-AlCl3 were investigated. Under optimum reaction conditions, a higher than 99% conversion of olefins was achieved. The preliminary results revealed that the process could save time, consume less energy, separate products easier, and cause less pollution to the environment.
基金National Natural Science Foundation of China ( No.50872124)Programfor Changjiang Scholars and Innovative Research Teamin University,China(No.IRT0654)
文摘A novel heterogeneous catalyst, viscose fiber- supported cobalt phthalocyanine (Co - TDTAPc - F), was prepared by immobilizing cobalt tetra(2.4 - dichloro- 1,3, 5 -triazine)aminophtbalocyanine (Co- TDTAPc) on viscose fibers covalcntly. The oxidative removal of chlorophenols such as 2 - chlorophenoi, 4 - chlorophenol, 2, 4 - dichlorophenol, and 2, 4, 6 - trichlorophenol was investigated in the catalytic oxidative system of Co - TDTAPc- F/H2O2. Furthermore, more than 98% of these chloropbenols were decomposed in 4 h. Phenol, oxalic acid, maleic acid, and succinic acid, etc., were detected by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrophotometer (GC - MS), and these short-chain organic acids could be further oxidized easily. The results indicated that the catalytic oxidation in the Co- TDTAPc - F/H2O2 system leaded to a deeper oxidation. In addition, a degradation pathway for chlorophenols was proposed on the basis of detection of intermediate compounds.